AML patients for in vivo study of venetoclax plus AraC treatment
Ontology highlight
ABSTRACT: Therapy resistance represents a major clinical challenge in acute myeloid leukemia (AML). Here we define a “MitoScore” signature that identifies high mitochondrial oxidative phosphorylation (OxPHOS) in vivo and in AML patients. Primary AML cells with cytarabine (AraC) resistance and high MitoScore relied on mitochondrial Bcl2 and were highly sensitive to venetoclax (VEN) plus AraC (but not to VEN plus azacytidine, AZA). Single-cell transcriptomics of VEN+AraC-residual cell populations revealed adaptive resistance associated with changes in OxPHOS, electron transport chain complex (ETC) and the TP53 pathway.
ORGANISM(S): Homo sapiens
PROVIDER: GSE183329 | GEO | 2021/11/12
REPOSITORIES: GEO
ACCESS DATA