Transcriptome analysis of Bacillus subtilis salt stress adaptation
Ontology highlight
ABSTRACT: Whole-genome microarray technology and state-of-the-art proteomic techniques were applied to provide a global and time-resolved picture of the physiological response of B. subtilis cells exposed to a severe and sudden osmotic up-shift. This combined experimental approach provided quantitative data for 3961 mRNA profiles, 590 expression profiles of proteins detected in the cytosol and 383 expression profiles of proteins detected in the membrane fraction. Our study uncovered a well-coordinated induction of gene expression subsequent to an osmotic up-shift that involves large parts of the SigB, SigW, SigM and SigX regulons and additionally osmotic up-regulation of a large number of genes that do not belong to these regulons. In total, osmotic up-regulation of about 500 B. subtilis genes was observed. Our data provide an unprecedented rich basis for further in-depth investigation on the physiological and genetic responses of B. subtilis to hyperosmotic stress.
ORGANISM(S): Bacillus subtilis
PROVIDER: GSE18345 | GEO | 2009/12/01
SECONDARY ACCESSION(S): PRJNA118153
REPOSITORIES: GEO
ACCESS DATA