Systems analysis of interaction between p38/MAPK pathway and SARS-CoV-2
Ontology highlight
ABSTRACT: SARS-CoV-2, the causative agent of the COVID-19 pandemic, drastically modifies the cells that it infects. One such effect is the activation of the host p38 mitogen-activated protein kinase (MAPK) pathway, which plays a major role in inflammation pathways that are dysregulated in severe COVID-19 cases. Inhibition of p38/MAPK activity in SARS-CoV-2-infected cells reduces both cytokine production and viral replication. Here, we applied a systems biology approach to better understand interactions between the p38/MAPK pathway and SARS-CoV-2 in human lung epithelial cells. We found several components of the p38/MAPK pathway positively and negatively impact SARS-CoV-2 infection and that p38ß is a required host factor for SARS-CoV-2 that acts by promoting viral protein translation in a manner that prevents innate immune sensing. Furthermore, we combined chemical and genetic perturbations of p38ß with quantitative phosphoproteomics to identify novel, putative p38ß substrates in an unbiased manner, with broad relevance beyond SARS-CoV-2 biology.
ORGANISM(S): Homo sapiens
PROVIDER: GSE183999 | GEO | 2022/01/21
REPOSITORIES: GEO
ACCESS DATA