Hepatic thyroid hormone signalling modulates glucose homeostasis through the regulation of GLP-1 production via bile acid-mediated FXR antagonism
Ontology highlight
ABSTRACT: A greater understanding of the glucose homeostasis mediated by glucagon-like peptide-1 (GLP-1) will facilitate the development of novel glucose-lowering treatments. Here we show that improved glucose metabolism in hypothyroid mice after treatment of T3, the active form of thyroid hormone (TH), is accompanied with increased GLP-1 production and insulin secretion. Treatment of a GLP-1 receptor antagonist is able to attenuate the observed T3 effect on insulin and glucose levels, suggesting that GLP-1 is critically involved in the regulation of glucose homeostasis by T3. By using a mouse model lacking hepatic TH receptor β (TRβ) and a liver-specific TRβ-selective agonist, we demonstrate that TRβ-mediated hepatic TH signalling is not only required for the regulation of GLP-1 production by T3 but also the insulinotropic and glucose-lowering effects of T3. Accordingly, administration of the liver-targeted TRβ-selective agonist is capable of increasing GLP-1 and insulin levels and alleviating hyperglycemia in diet-induced obesity. Mechanistically, through suppressing CYP8B1 expression, T3 shapes the bile acid (BA) composition and increases the levels of Farnesoid X receptor (FXR)-antagonistic BAs, thereby potentiating the GLP-1 production and insulin secretion by repressing intestinal FXR signalling. Consistently, correlations between the T3 levels and either GLP-1 or FXR-antagonistic BA levels can be observed in euthyroid human subjects. Thus, our study reveals a previously undescribed role of hepatic TH signalling in glucose homeostasis through the regulation of GLP-1 production via BA-mediated FXR antagonism, which will underpin the development of novel therapeutics.
ORGANISM(S): Mus musculus
PROVIDER: GSE184055 | GEO | 2022/09/23
REPOSITORIES: GEO
ACCESS DATA