Reconstruction and analysis genome-scale metabolic model of thermophilic fungus Myceliophthora thermophila
Ontology highlight
ABSTRACT: Myceliophthora thermophila is a thermophilic fungus with great biotechnological characteristics for industrial applications, which can degrade and utilize all major polysaccharides in plant biomass. Nowadays, it has been developing into a platform for production of enzyme, commodity chemicals and biofuels. Therefore, an accurate genome-scale metabolic model would be an accelerator for this fungus becoming a universal chassis for biomanufacturing. Here we present a genome-scale metabolic model for M. thermophila constructed using an auto-generating pipeline with consequent thorough manual curation. Temperature plays a basic and critical role for the microbe growth. we are particularly interested in the genome wide response at metabolic layer of M. thermophilia as it is a thermophlic fungus. To study the effects of temperature on metabolic characteristics of M. thermophila growth, the fungus was cultivated under different temperature. The metabolic rearrangement predicted using context-specific GEMs integrating transcriptome data.The developed model provides new insights into thermophilic fungi metabolism and highlights model-driven strain design to improve biotechnological applications of this thermophilic lignocellulosic fungus.
ORGANISM(S): Thermothelomyces thermophilus ATCC 42464
PROVIDER: GSE184074 | GEO | 2022/09/14
REPOSITORIES: GEO
ACCESS DATA