Impaired TFAM expression promotes mitochondrial damage to drive fibroblast activation and fibrosis in systemic sclerosis
Ontology highlight
ABSTRACT: Objectives: The transcription factor TFAM is controlling the transcription of core proteins required for mitochondrial homeostasis. The aim of the current study was to investigate changes in TFAM expression in systemic sclerosis (SSc), to analyze mitochondrial function and to evaluate the consequences for fibroblast activation. Methods: The expression of TFAM was analyzed by immunofluorescence and Western blot. The effects of TFAM knockout were investigated in cultured fibroblasts and in bleomycin-induced skin and lung fibrosis and in TβRIact-induced skin fibrosis. Results: The expression of TFAM was downregulated in fibroblasts in SSc skin and in cultured SSc fibroblasts. The downregulation of TFAM was associated with decreased mitochondrial number and accumulation of damaged mitochondria with release of mtDNA, accumulation of deletions in mtDNA, metabolic alterations with impaired OXPHOS and release of the mitokine GDF15. Chronic, but not acute exposure of normal fibroblasts to TGFβ mimicked the finding in SSc fibroblasts with downregulation of TFAM and accumulation of mitochondrial damage. Downregulation of TFAM promotes fibroblast activation with upregulation of fibrosis-relevant GO-terms in RNASeq. Mice with fibroblast-specific knockout of TFAM are prone to fibrotic tissue remodeling with fibrotic responses even to NaCl instillation and enhanced sensitivity to bleomycin injection and TβRIact-overexpression. TFAM knockout fosters SMAD3 signaling to promote fibroblast activation. Conclusions: Alterations in the key mitochondrial transcription factor TFAM in response to prolonged activation of TGFβ and associated mitochondrial damage induce transcriptional programs that promote fibroblast-to-myofibroblast transition and drive tissue fibrosis.
Project description:Objectives: Eph/Ephrin cell-cell signaling is emerging as a key player in tissue fibrogenesis. The aim of this study was to test the hypothesis that the receptor tyrosine kinase EphB2 mediates dermal fibrosis in systemic sclerosis (SSc). Methods: We assessed normal and SSc human skin biopsies for EphB2 expression. The in vivo role of EphB2 in skin fibrosis was investigated by subjecting EphB2-knockout mice to both bleomycin-induced and tight skin (Tsk1/+) genetic mouse models. EphB2 kinase-dead and overactive point mutant mice were used to evaluate the role of EphB2 forward signaling in bleomycin-induced dermal fibrosis. In vitro studies were performed on dermal fibroblasts from SSc patients and healthy controls, which was followed by in vivo analysis of fibroblast-specific EphB2 deficient mice. Results: Expression of EphB2 is upregulated in SSc skin tissue and explanted SSc dermal fibroblasts compared to healthy controls. EphB2 expression is elevated in two animal models of dermal fibrosis. In mice, EphB2 drives dermal fibrosis in both the bleomycin and the Tsk1/+ models of skin fibrosis. EphB2 forward signaling is a critical mediator of dermal fibrosis. Transforming growth factor-β (TGFβ) cytokines upregulate EphB2 in dermal fibroblasts via non-canonical TGFβ/SMAD signaling and silencing EphB2 in dermal fibroblasts is sufficient to dampen TGFβ-induced fibroblast-to-myofibroblast differentiation. Moreover, mice with fibroblast-specific deletion of EphB2 showed impaired fibroblast-to-myofibroblast differentiation and reduced skin fibrosis upon bleomycin challenge. Conclusion: Our data implicate EphB2 overexpression and kinase-mediated forward signaling in the development of dermal fibrosis in SSc. EphB2 thus represents a potential new therapeutic target for SSc.
Project description:Fibrotic diseases impose a major socioeconomic challenge on modern societies with limited treatment options. Adropin, a peptide hormone encoded by the energy-homeostasis-associated (ENHO) gene, is implicated in metabolism and vascular homeostasis, but its role in the pathogenesis of fibrosis remains enigmatic. Here, we used machine learning approaches in combination with functional in vitro and in vivo experiments to characterize Adropin/ENHO as a potential regulator involved in fibroblast activation and tissue fibrosis in systemic sclerosis (SSc). We demonstrated consistent downregulation of Adropin/ENHO in SSc skin across different SSc cohorts. The prototypical profibrotic cytokine TGFβ reduced Adropin/ENHO expression in a JNK-dependent manner. Restoration of Adropin signaling by therapeutic application of bioactive Adropin34-76 peptides in turn inhibited TGFβ-induced fibroblast activation and fibrotic tissue remodeling in primary human dermal fibroblasts, three-dimensional full-thickness skin equivalents, the mouse models of bleomycin-induced pulmonary fibrosis and sclerodermatous chronic graft-versus-host-disease (sclGvHD), and precision-cut human skin slices (PCSS). Knockdown of GPR19, receptor of Adropin, abrogated the antifibrotic effects of Adropin in fibroblasts. RNA-seq demonstrated that the antifibrotic effects of Adropin34-76 were functionally linked to deactivation of GLI1 dependent profibrotic transcriptional networks, which was experimentally confirmed in vitro, in vivo and ex vivo. ChIP-seq confirmed Adropin34-76-induced changes in TGFβ/GLI1 signaling. Our study thus characterizes the TGFβ-induced downregulation of Adropin/ENHO expression as a potential pathomechanism of SSc as a prototypical systemic fibrotic disease that unleashes uncontrolled activation of profibrotic GLI1 signaling. We also provide evidence in multiple preclinical models that Adropin34-76 might offer potential for the treatment of fibrosis.
Project description:Fibrotic diseases impose a major socioeconomic challenge on modern societies with limited treatment options. Adropin, a peptide hormone encoded by the energy-homeostasis-associated (ENHO) gene, is implicated in metabolism and vascular homeostasis, but its role in the pathogenesis of fibrosis remains enigmatic. Here, we used machine learning approaches in combination with functional in vitro and in vivo experiments to characterize Adropin/ENHO as a potential regulator involved in fibroblast activation and tissue fibrosis in systemic sclerosis (SSc). We demonstrated consistent downregulation of Adropin/ENHO in SSc skin across different SSc cohorts. The prototypical profibrotic cytokine TGFβ reduced Adropin/ENHO expression in a JNK-dependent manner. Restoration of Adropin signaling by therapeutic application of bioactive Adropin34-76 peptides in turn inhibited TGFβ-induced fibroblast activation and fibrotic tissue remodeling in primary human dermal fibroblasts, three-dimensional full-thickness skin equivalents, the mouse models of bleomycin-induced pulmonary fibrosis and sclerodermatous chronic graft-versus-host-disease (sclGvHD), and precision-cut human skin slices (PCSS). Knockdown of GPR19, receptor of Adropin, abrogated the antifibrotic effects of Adropin in fibroblasts. RNA-seq demonstrated that the antifibrotic effects of Adropin34-76 were functionally linked to deactivation of GLI1 dependent profibrotic transcriptional networks, which was experimentally confirmed in vitro, in vivo and ex vivo. ChIP-seq confirmed Adropin34-76-induced changes in TGFβ/GLI1 signaling. Our study thus characterizes the TGFβ-induced downregulation of Adropin/ENHO expression as a potential pathomechanism of SSc as a prototypical systemic fibrotic disease that unleashes uncontrolled activation of profibrotic GLI1 signaling. We also provide evidence in multiple preclinical models that Adropin34-76 might offer potential for the treatment of fibrosis.
Project description:In this study, we demonstrated that baseline SOX11 expression was significantly higher in dermal fibroblasts (DFs) isolated from patients with SSc than that in controls, and increased in response to TGF-b. We then showed that SOX11 is involved in the expression of periostin and some periostin-dependent fibrotic factors identified in lung fibroblasts previously. Moreover, we identified some fibrotic factors induced by SOX11 in DNA microarrays combining TGF-b induction and SOX11 knockdown. Finally, we showed that genetic deletion of SOX11 in Postn positive fibroblast cells protects from bleomycin (BLM)-induced skin fibrosis. Altogether, our data indicate that SOX11 and periostin forms a vicious circle and that TGF-b activates this circle specifically in SSc dermal fibroblasts.
Project description:Mitochondrial DNA (mtDNA) encodes essential components of the respiratory chain and loss of mtDNA leads to mitochondrial dysfunction and neurodegeneration. Mitochondrial transcription factor A (TFAM) is an essential component of mtDNA replication and a regulator of mitochondrial copy number in cells. Studies have shown that TFAM knockdown leads to mitochondrial dysfunction and respiratory chain deficiencies. Using gene expression analysis, we aimed to investigate the effects of mtDNA dysfunction in the CNS at the molecular level. We used microarray analysis to investigate gene expression in cases of mitochondrial dysfunction in the CNS. RNA was purified from the late third instar larval CNS from control larvae, or larvae over-expressing mitochondrial transcription factor A (TFAM) in post-mitotic neurons using the neuron specific driver nsyb-Gal4. Three replicates are included for each condition.
Project description:Fibrosis of the kidney is the final common pathway leading to end stage renal failure. By analyzing kidneys of patients and animal models with fibrosis we observed a significant mitochondrial defect, including the loss of the mitochondrial transcription factor A (TFAM) in kidney tubule cells. Here, we generated mice with tubule-specific deletion of TFAM (Ksp-Cre/Tfam flox/flox). While these mice developed severe mitochondrial loss and energetic deficit (ATP level decline) by 6 weeks of age, kidney fibrosis, immune cell infiltration and progressive azotemia causing death was only observed around 12 weeks of age. Mechanistic studies demonstrated that in the TFAM KO mice aberrant packaging of the mitochondrial DNA (mtDNA) resulted in escape of the mtDNA into the cytosol of the renal cells, activation of the cytosolic cGAS-STING (Stimulator of interferon genes) DNA sensing pathway, and thus cytokine expression and immune cell recruitment. Genetic deletion or pharmacological inhibition of STING ameliorated kidney fibrosis in mouse models of chronic kidney disease, demonstrating that in addition to its essential role in metabolism TFAM sequesters mtDNA to prevent the activation of innate immune pathways and fibrosis.
Project description:The goal of this analysis was to utilize microarray profiling to identify basal alterations in gene expression in response to TFAM depletion and mtDNA stress. Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids. The abundant mtDNA-binding protein, TFAM (transcription factor A,mitochondrial), regulates nucleoid architecture, abundance and segregation. Complete mtDNA depletion profoundly impairs oxidative phosphorylation, triggering calcium-dependent stress signalling and adaptive metabolic responses. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and ageing, remain poorly defined. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signalling to enhance the expression of a subset of interferon-stimulated genes. Mechanistically, we find that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS (also known as MB21D1) and promotes STING (also known as TMEM173)–IRF3-dependent signalling to elevate interferon-stimulated gene expression, potentiate type I interferon responses and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which enhances antiviral signalling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signaling and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully engage antiviral innate immunity. Murine embryonic fibroblasts were isolated from wild-type or Tfam+/- E13.5 littermate embryos. RNA from passage-matched wild-type and Tfam+/- MEF lines was extracted in duplicate and hybridized onto Affymetrix microarrays. Four arrays were performed in total with two technical replicates per genotype.
Project description:Skin and lung fibrosis in systemic sclerosis (SSc) is driven by myofibroblasts, alpha-smooth muscle actin (SMA) expressing cells that produce matrix as well as increase tension on surrounding tissues. Myofibroblast progenitors have been described to arise from a variety of cell types in murine fibrosis models, but relatively modest insight is available as to their source and differentiation in fibrotic human diseases. We utilize single cell RNA-sequencing to examine the transcriptome changes that occur in fibroblasts in SSc skin and during myofibroblast differentiation. We show that dermal myofibroblasts arise from an SFRP2/DPP4-expressing progenitor fibroblast population. In SSc skin, fibroblasts undergo global changes in gene expression, including SFRP2-expressing fibroblasts, which globally upregulate expression of markers, such as PRSS23 and THBS1. However, only a fraction of SSc fibroblasts differentiate into myofibroblasts, as shown by expression of additional markers, such as SFRP4 and FNDC1. These results indicate that myofibroblasts derive from a specific fibroblast subpopulation in SSc skin, that their differentiation proceeds in two stages and that other fibroblast populations also shift transcriptomes in SSc skin, suggesting a cytokine driven process. The myofibroblast transcriptome implicates upstream transcription factors that should help further unravel the drivers of myofibroblast differentiation.
Project description:In addition to autoimmune and inflammatory diseases, variants of the TNFAIP3 gene encoding A20 are also associated with systemic sclerosis (SSc). However, it remains unclear how genetic factors contribute to fibrosis in SSc, and which cell types drive disease due to SSc-specific genetic alterations. We characterized the expression and function of A20, and its negative transcriptional regulator DREAM, in patient with SSc. We found that levels of A20 were significantly reduced in SSc skin and lung biopsies, while DREAM was elevated and showed anti-correlation with A20. Mice haploinsufficient for A20, or harboring fibroblasts-specific A20 deletion, recapitulated major pathological and genomic features of SSc, whereas DREAM-null mice showed elevated A20 expression and were protected from fibrosis. In fibroblasts, A20 mitigated ex vivo profibrotic responses. An anti-fibrotic small molecule targeting the adiponectin receptors stimulated A20 expression in vitro in wildtype but not A20-deficient fibroblasts, and in bleomycin-treated mice. Thus, A20 has a novel function in negative regulation of fibroblast responses, and together with DREAM, constitutes a critical regulatory network governing the fibrotic process in SSc, suggesting that A20 and DREAM represent novel druggable targets.
Project description:Objectives: Scleroderma (systemic sclerosis, SSc), as a prototypic inflammation-driven fibrotic disease, possesses connective tissue lesions populated with persistently activated myofibroblasts maintained by an mechanotranductive/pro-adhesive signaling loop. Drugs targeting this pathway are therefore of likely therapeutic benefit. The mechanosensitive transcriptional co-activator, yes activated protein-1 (YAP1), is activated in SSc fibroblasts. The terpenoid celastrol has recently been identified as a YAP1 inhibitor: however, if celastrol can alleviate SSc fibrosis is unknown. Methods: Human dermal fibroblasts from healthy individuals and patients with diffuse cutaneous SSc were treated with or without transforming growth factor b1 (TGFb1) in the presence or absence of celastrol. C57BL6J mice were subjected to the inflammatory-driven bleomycin-induced model of skin SSc, in the presence or absence of celastrol. RNA expression was assessed using RNAseq, real-time polymerase chain reaction and spatial transcriptomic analyses. Protein expression was determined using Western blot and enzyme-linked immunosorbent assay. Fibrosis was monitored by hematoxylin and eosin and trichrome staining, and indirect immunofluorescence analysis. Results: In dermal fibroblasts, celastrol impaired the ability of TGFβ1 to induce an SSc-like pattern of gene expression, including the induction of cellular communication network factor 2 (CCN2), collagen I and TGFβ1 protein. Celastrol alleviated the persistent fibrotic phenotype of dermal fibroblasts cultured from lesions of SSc patients. In the bleomycin-induced model of SSc dermatopathology, celastrol inhibited fibrosis and blocked nuclear localization of YAP in myofibroblasts. Conclusion: Our data are consistent with the hypothesis that compounds, such as celastrol, that antagonize the YAP pathway may be potential treatments for SSc skin fibrosis.