Project description:Depletion of oocytes and follicles and reduced oocyte quality contribute to age-associated ovarian senescence and infertility. Telomere shortening and altered methylation make two major contributions to general aging. Resveratrol acts as anti-oxidant and Sirt1 activator to alleviate aging including reproductive aging. It remains elusive whether resveratrol can reprogram the aging epigenome. We sought to examine aging ovarian epigenome and the potential effects of resveratrol by combined analysis of telomere length, transcriptome and methylome mainly in oocytes and also in granulosa cells, two major cell types in the ovary.
Project description:Depletion of oocytes and follicles and reduced oocyte quality contribute to age-associated ovarian senescence and infertility. Telomere shortening and altered methylation make two major contributions to general aging. Resveratrol acts as anti-oxidant and Sirt1 activator to alleviate aging including reproductive aging. It remains elusive whether resveratrol can reprogram the aging epigenome. We sought to examine aging ovarian epigenome and the potential effects of resveratrol by combined analysis of telomere length, transcriptome and methylome mainly in oocytes and also in granulosa cells, two major cell types in the ovary.