Angiotensin-(1-7) analogue AVE0991 modulates astrocyte-mediated neuroinflammation via lnc RNA SNHG14/miR-223-3p/NLRP3 pathway and offers neuroprotection in a transgenic mouse model of Alzheimer’s disease
Ontology highlight
ABSTRACT: Objective: Emerging evidence suggested that brain angiotensin-(1-7) (Ang-(1-7)) deficiency contributed to the pathogenesis of Alzheimer’s disease (AD). Meanwhile, our previous studies revealed that restoration of brain Ang-(1-7) levels provided neuroprotection by inhibition of inflammatory responses during AD progress. However, the potential molecular mechanisms by which Ang-(1-7) modulates neuroinflammation remain unclear. Materials and Methods: APP/PS1 mice were injected intraperitoneally with AVE0991 (a nonpeptide analogue of Ang-(1-7)) once a day for 30 consecutive days. Cognitive functions, neuronal and synaptic integrity, and inflammation-related markers were assessed. Since astrocytes played a crucial role in AD-related neuroinflammation whilst long noncoding RNAs (lncRNAs) were reported to participate in modulating inflammatory responses, astrocytes of APP/PS1 mice were then isolated for high-throughput lncRNA sequencing to identify the most differentially expressed lncRNA following AVE0991 treatment. Afterward, the downstream pathway of this lncRNA in the anti-inflammatory action of AVE0991 were investigated using primary astrocytes. Results: The protection of AVE0991 against cognitive impairment and neuronal and synaptic damage in APP/PS1 mice was confirmed. For the first time, we demonstrated that AVE0991 suppressed astrocytic NLRP3 inflammasome-mediated neuroinflammation via a lncRNA SNHG14-dependent manner. SNHG14 acted as a sponge of miR-223-3p while NLRP3 represented a direct target of miR-223-3p in astrocytes. In addition, miR-223-3p participated in the AVE0991-induced suppression of astrocytic NLRP3 inflammasome. Conclusion: These results suggest that AVE0991 inhibits astrocyte-mediated neuroinflammation via SNHG14/miR-223-3p/NLRP3 pathway. Moreover, these results reveal the underlying mechanisms by which Ang-(1-7) inhibits neuroinflammation under AD condition and uncovers the potential of its nonpeptide analogue AVE0991 in AD treatment.
Project description:Objective: The protective components ACE2/Ang(1-7)/MasR of the renin-angiotensin system has been verified to play a role in Alzheimer's disease (AD). Our previous study revealed that enhancement of brain ACE2 activity, an important effector of RAS, by diminazene aceturate (DIZE) ameliorated Alzheimer's disease-like neuropathology and attenuated neuroinflammation in the brain of SAMP8 mice. However, the potential molecular mechanisms by which DIZE modulates neuroinflammation in AD remain unclear. Materials and Methods: APP/PS1 mice were injected intraperitoneally with DIZE (once a day for 30 consecutive days). Cognitive functions, neuronal and synaptic integrity, and inflammation-related markers were assessed by Morris water maze, Nissl staining, Western blot and ELISA, respectively. Since astrocytes played a crucial role in AD-related neuroinflammation whilst miRNAs were reported to participate in modulating inflammatory responses, astrocytes of APP/PS1 mice were then isolated for high-throughput miRNAs sequencing to identify the most differentially expressed miRNA following DIZE treatment. Afterward, the downstream pathway of this miRNA in the anti-inflammatory action of DIZE was investigated using primary astrocytes. Results: The results showed that DIZE alleviated cognitive impairment and neuronal and synaptic damage in APP/PS1 mice. Simultaneously, DIZE suppressed the secretion of pro-inflammatory cytokines and the expression of NLRP3 inflammasome. Importantly, miR-224-5p was significantly up-regulated in the astrocytes of APP/PS1 mice treated by DIZE, and NLRP3 is one of the targets of miR-224-5p. Upregulation of miR-224-5p inhibited the expression of NLRP3 in Aβ1–42-stimulated cells, whereas miR-224-5p downregulation reversed this effect. Furthermore, the inhibition of miR-224-5p could reverse the inhibitory effect of DIZE on astrocytic NLRP3 inflammasome. Conclusion: These results firstly suggested that DIZE inhibits astrocyte-mediated neuroinflammation via miR-224-5p/NLRP3 pathway. Moreover, these results reveal the underlying mechanisms by which DIZE inhibits neuroinflammation under AD condition and uncovers the potential of DIZE in AD treatment.
Project description:To identify the differentially expressed genes in the brain of WT mice in comparison with 9-month-old APP/PS1 mice, we examined the microarray gene expression profile of the groups above. Neuroinflammation is well implicated in the progression of Alzheimer’s Disease (AD) now. What’ more, neuroinflammation is supposed to be one of the essential trigger to induce neurodegeneration. In this study, we examined the differentially expressed genes (including coding transcripts and lncRNA) between the wild type (WT) mouse and a AD model, the APP/PS1 mouse. We found that, among all these P2XR family genes, P2X7R is not only the most abundant expressed, but also identified as the highest upregulated gene. The elevated P2X7R expression promotes neuroinflammation through activation of NLRP3 inflammsome, and further mediate one kind of inflammatory cell death, pyroptosis. Blockade of P2X7R could not only inhibit pyroptosis, but also could mildly alleviate cognitive deficits in APP/PS1 mice. Our study provides new insight into an alternative strategy for the development of AD therapy.
Project description:Alzheimer's disease (AD) is a severe neurodegenerative disorder. Clinical trials to identify agents to treat AD have failed, and its underlying molecular pathology and etiology remain elusive. Neuroinflammation is thought to play a key role in the progression of AD. Emerging evidence has identified lower Nicotinamide adenine dinucleotide (NAD+) levels as a major factor in neurodegeneration, especially in AD. NAD+ is an important metabolite in all human cells, as it is at the convergence of many central processes in cellular and mitochondrial maintenance, including DNA repair and mitophagy (the degradation of damaged mitochondria). Our previous work found that treatment of 3xTgAD mice with an NAD+ precursor, nicotinamide riboside (NR), can improve key AD features including tau phosphorylation and learning deficits in mice. Here we used the APP/PS1 AD mouse model to interrogate the effect of NR on neuroinflammation. Microarray analysis revealed major changes in pathways and genes associated with inflammation and the APP/PS1 mice had lower NAD+ levels than WT mice. Thus, seven months old mice were treated with NR for five months and their NAD+/NADH ratio increased. Brain neuroinflammation decreased as determined by decreased activation of astrocytes and microglia, decreased pro-inflammatory cytokines and chemokines in the brains of the APP/PS1 mice. NR decreased neuroinflammation by lowering the NLRP3 inflammasome and NF-κB pathways. NR also attenuated DNA damage and apoptosis in the AD mouse brains. NR dramatically decreased senescence in the hippocampus and cortex of AD mice, relative to controls. Recent studies suggest that cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) activation are associated with DNA damage and senescence. cGAS-STING was activated in AD mice and decreases after NR treatment. Suggesting that NR can diminish neuroinflammation and senescence through the cGAS-STING pathway. NR treatment also greatly improved cognition and synaptic function in the APP/PS1 mice. We propose that the cGAS-STING pathway should be evaluated as a potential novel therapeutic target in AD.
Project description:Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting memory and cognition. The disease is accompanied by an abnormal deposition of ß-amyloid plaques in the brain that contributes to neurodegeneration and is known to induce glial inflammation. Studies in the APP/PS1 mouse model of ß-amyloid-induced neuropathology have suggested a role for inflammasome activation in ß-amyloid-induced neuroinflammation and neuropathology. Here, we evaluated the in vivo role of microglia-selective and full body inflammasome signalling in several mouse models of ß-amyloid-induced AD neuropathology. Unexpectedly, microglia-specific deletion of the inflammasome regulator A20 and inflammasome effector protease caspase-1 in the AppNL-G-F and APP/PS1 models failed to identify a prominent role for microglial inflammasome signalling in ß-amyloid-induced neuropathology. Moreover, global inflammasome inactivation through respectively full body deletion of caspases 1 and 11 in AppNL-G-F mice and Nlrp3 deletion in APP/PS1 mice, also failed to modulate amyloid pathology and disease progression. In agreement, single-cell RNA sequencing did not reveal an important role for Nlrp3 signalling in driving microglial activation and the transition into disease-associated states, both during homeostasis and upon amyloid pathology. Collectively, these results question a generalizable role for inflammasome activation in pre-clinical amyloid-only models of neuroinflammation.
Project description:To examine the regulation of microglia by N-AS-triggered SPMs, we analyzed the gene expression patterns of microglia derived from WT, APP/PS1, and N-AS-injected APP/PS1 mice using RNAseq. These results indicated that N-AS-triggered SPMs activated an anti-inflammatory, positive immune response, and enhanced the phagocytic abilities of microglia in N-AS-treated APP/PS1 mice, leading to resolution of neuroinflammation and upregulation of phagocytic microglia in this AD animal model.
Project description:Alzheimer’s disease (AD) is a common form of dementia characterized by amyloid plaque deposition, TAU pathology, neuroinflammation and neurodegeneration. Mouse models recapitulate some key features of AD. For instance, the B6.APP/PS1 model (carrying human transgenes for mutant forms of APP and PSEN1) shows plaque deposition and associated neuroinflammatory responses involving both astrocytes and microglia beginning around 6 months of age. However, in our colony, TAU pathology, significant neurodegeneration and cognitive decline are not apparent in this model even at older ages. Therefore, this model is ideal for studying neuroinflammatory responses to amyloid deposition. Here, RNA sequencing of brain and retinal tissue, generalized linear modeling (GLM), functional annotation followed by validation by immunofluorescence (IF) was performed in B6.APP/PS1 mice to determine the earliest molecular changes prior to and around the onset of plaque deposition (2-6 months of age).
Project description:NLRP3 inflammasome activation is involved in the progression of Alzheimer's disease. To unravel the unique cell populations and clusters regulated by NLRP3 in the brain, we enriched CD11b+ cells from the brains of 18 month old wild-type, NLRP3-/-, APP/PS1 and APP/PS1.NLRP3-/- mice for single cell RNAseq.
Project description:Activation of the NLRP3 inflammasome has been implicated in the pathogenesis of Alzheimer’s disease (AD), via the characterised release of IL-1β and ASC specks. However, whether NLRP3 was involved in pathways beyond this remained unknown. Here were enriched CD11b+ cells from the brains of 4, 6 an 12 month old wild-type, NLRP3-/-, APP/PS1 and APP/PS1.NLRP3-/- mice for bulk RNA sequencing. We found that amyloid deposition was associated with an increase in the expression of genes encoding inflammatory or phagocytic proteins from 6 months onwards. Interestingly, loss of NLRP3 influences glutamine/glutamate-related metabolism and increases expression of microglial Slc1a3. The increase in Slc1a3 was observed in all mice on a NLRP3-/- background and at all ages examined, demonstrating a new role for this transporter in microglia.
Project description:Bulk RNA-sequencing of astrocytes in the APP NL-F and APP PS1 models of ß-amyloidopathy, in which aspects of AD-related pathology progress at different speed, shows age-dependent gene expression changes. However, bulk RNA-seq does not provide insight into the heterogeneity of expression within this cell type, particularly relevant for such models, where reactive astrogliosis is most prominent in the vicinity of plaques. To investigate astrocyte heterogeneity in ß-amyloidopathy models, we thus performed single cell RNA-sequencing on astrocytes separated by FACS.
Project description:Objective: Adipose tissue plays a key role in obesity related metabolic dysfunction. MicroRNA (miRNA) are gene regulatory molecules involved in inter-cellular and inter-organ communication. We hypothesised that miRNA levels in adipose tissue would change after gastric bypass surgery and that this would provide insights into their role in obesity-induced metabolic dysregulation. Methods: miRNA-profiling (Affymetrix_Gene-Chip_miRNA2.0_Arrays) of omental and subcutaneous adipose (n=15 females) before, and after, gastric bypass surgery. Results: One omental, and thirteen subcutaneous adipose miRNAs were significantly, differentially expressed after gastric bypass, including down-regulation of miR-223-3p and its antisense relative, miR-223-5p, in both adipose tissues. mRNA levels of miR-223-3p targets NLRP3 and GLUT4 were increased and decreased respectively following gastric bypass in both adipose tissues. Significantly more NLRP3 protein was observed in omental adipose after gastric bypass (P=0.02). Significant hypomethlyation of NLRP3 and hypermethylation of miR-223 was observed in both adipose tissues after gastric bypass. In subcutaneous adipose significant correlations were observed between both miR-223-3p and miR-223-5p and glucose, and between NLRP3 mRNA and protein levels and blood lipids. Conclusions: This is the first report detailing genome-wide miRNA-profiling of omental adipose before and after gastric bypass, and further highlights a link between miR-223-3p and the NLRP3 inflammasome in obesity.