Chromatin condensation is independent from nuclear condensation in late-stage terminal erythropoiesis revealed from the dynamic three-dimensional genomic organizations [Hi-C]
Ontology highlight
ABSTRACT: Mammalian terminal erythropoiesis involves chromatin and nuclear condensation followed by enucleation. Late-stage erythroblasts undergo caspase-mediated nuclear opening formation that is important for nuclear condensation through partial release of histones. It remains unknown whether nuclear opening and histone release influence the three-dimensional (3D) genomic organization during terminal erythropoiesis. Here, we compared the genome wide 3D organization, chromatin accessibility, and transcriptome of the cultured mouse erythroid progenitors with and without the blocking of nuclear opening during differentiation. We found that terminal differentiation from the basophilic to orthochromatic stages of erythroblasts involves compaction and establishment of long-range interactions of the heterochromatin regions, which is associated with globally increased accessibility and upregulation of erythroid-related genes. Surprisingly, blocking of nuclear opening did not have a significant impact on 3D genomic organization, chromatin accessibility, or transcriptome despite the inhibition of histone release and nuclear condensation. Inhibition of nuclear opening also significantly affected enucleation. We further demonstrated this through a caspase-3 and 7 double knockout mouse model, which showed significant defects in nuclear opening and condensation with a compromise of enucleation in fetal erythroid progenitors. However, loss of these effector caspases had minimal effects on the red cell indices and survival of the recipient animals in a fetal liver cell transplantation model. Overall, these results indicate that nuclear opening and histone release may not be necessary for chromatin condensation and global transcriptome but are critical for nuclear condensation and efficient enucleation. These data also underline the robustness of enucleation despite the dysplastic or less condensed nucleus.
Project description:Mammalian terminal erythropoiesis involves chromatin and nuclear condensation followed by enucleation. Late-stage erythroblasts undergo caspase-mediated nuclear opening formation that is important for nuclear condensation through partial release of histones. It remains unknown whether nuclear opening and histone release influence the three-dimensional (3D) genomic organization during terminal erythropoiesis. Here, we compared the genome wide 3D organization, chromatin accessibility, and transcriptome of the cultured mouse erythroid progenitors with and without the blocking of nuclear opening during differentiation. We found that terminal differentiation from the basophilic to orthochromatic stages of erythroblasts involves compaction and establishment of long-range interactions of the heterochromatin regions, which is associated with globally increased accessibility and upregulation of erythroid-related genes. Surprisingly, blocking of nuclear opening did not have a significant impact on 3D genomic organization, chromatin accessibility, or transcriptome despite the inhibition of histone release and nuclear condensation. Inhibition of nuclear opening also significantly affected enucleation. We further demonstrated this through a caspase-3 and 7 double knockout mouse model, which showed significant defects in nuclear opening and condensation with a compromise of enucleation in fetal erythroid progenitors. However, loss of these effector caspases had minimal effects on the red cell indices and survival of the recipient animals in a fetal liver cell transplantation model. Overall, these results indicate that nuclear opening and histone release may not be necessary for chromatin condensation and global transcriptome but are critical for nuclear condensation and efficient enucleation. These data also underline the robustness of enucleation despite the dysplastic or less condensed nucleus.
Project description:Mammalian terminal erythropoiesis involves chromatin and nuclear condensation followed by enucleation. Late-stage erythroblasts undergo caspase-mediated nuclear opening formation that is important for nuclear condensation through partial release of histones. It remains unknown whether nuclear opening and histone release influence the three-dimensional (3D) genomic organization during terminal erythropoiesis. Here, we compared the genome wide 3D organization, chromatin accessibility, and transcriptome of the cultured mouse erythroid progenitors with and without the blocking of nuclear opening during differentiation. We found that terminal differentiation from the basophilic to orthochromatic stages of erythroblasts involves compaction and establishment of long-range interactions of the heterochromatin regions, which is associated with globally increased accessibility and upregulation of erythroid-related genes. Surprisingly, blocking of nuclear opening did not have a significant impact on 3D genomic organization, chromatin accessibility, or transcriptome despite the inhibition of histone release and nuclear condensation. Inhibition of nuclear opening also significantly affected enucleation. We further demonstrated this through a caspase-3 and 7 double knockout mouse model, which showed significant defects in nuclear opening and condensation with a compromise of enucleation in fetal erythroid progenitors. However, loss of these effector caspases had minimal effects on the red cell indices and survival of the recipient animals in a fetal liver cell transplantation model. Overall, these results indicate that nuclear opening and histone release may not be necessary for chromatin condensation and global transcriptome but are critical for nuclear condensation and efficient enucleation. These data also underline the robustness of enucleation despite the dysplastic or less condensed nucleus.
Project description:Condensation of chromatin prior to enucleation is an essential component of terminal erythroid maturation, and defects in this process are associated with inefficient erythropoiesis and anemia. However, the mechanisms involved in this phenomenon are not well understood. Here, we identify a novel role for the histone variant H2A.X in erythropoiesis. We find in multiple model systems that this histone is essential for normal maturation and the loss of H2A.X in erythroid cells results in dysregulation in expression of erythroid specific genes as well a nuclear condensation defect. In Addition, we demonstrate that erythroid maturation is characterized by phosphorylation at both S139 and Y142 during late stage erythropoiesis. Knockout of the kinase BAZ1B/WSTF results in loss of Y142 phosphorylation and similar to loss of H2A.X, a defect in nuclear condensation. In this study, we present a model in which post-translational modifications on histone H2A.X during terminal erythroid maturation leads to Caspase-Induced Chromatin Condensation (CICC). In this novel pathway, although apoptosis is specifically suppressed, aspects of the apoptotic pathway remain active to drive terminal erythroid maturation. Suggesting that terminal erythroid maturation is indeed is a unique form of apoptosis.
Project description:Terminal differentiation of mammalian erythroid progenitors involves 4-5 cell divisions and induction of many erythroid important genes, followed by chromatin and nuclear condensation and enucleation. The protein levels of c-myc (Myc) are reduced dramatically during late stage erythroid maturation, coinciding with cell cycle arrest in G1-phase and enucleation, suggesting possible roles for c-myc in either or both of these processes. Here we demonstrate that ectopic Myc expression affects terminal erythroid maturation in a dose-dependent manner. Expression of Myc at physiological levels did not affect erythroid differentiation or cell cycle shutdown, but specifically blocked erythroid nuclear condensation and enucleation. Myc prevented deacetylation of several lysine residues in histones H3 and H4 that are normally deacetylated during erythroid maturation. When over-expressed at levels higher than the physiological range, Myc blocked erythroid differentiation and the cells continued to proliferate in cytokine-free, serum-containing culture medium with an early erythroblast morphology. These studies reveal an important dose-dependent function of Myc in regulating terminal maturation in mammalian erythroid cells. Our findings further support the emerging notion that Myc regulates chromatin structure by regulating global histone acetylation states. Five groups with three biological replicates in each.
Project description:Terminal differentiation of mammalian erythroid progenitors involves 4-5 cell divisions and induction of many erythroid important genes, followed by chromatin and nuclear condensation and enucleation. The protein levels of c-myc (Myc) are reduced dramatically during late stage erythroid maturation, coinciding with cell cycle arrest in G1-phase and enucleation, suggesting possible roles for c-myc in either or both of these processes. Here we demonstrate that ectopic Myc expression affects terminal erythroid maturation in a dose-dependent manner. Expression of Myc at physiological levels did not affect erythroid differentiation or cell cycle shutdown, but specifically blocked erythroid nuclear condensation and enucleation. Myc prevented deacetylation of several lysine residues in histones H3 and H4 that are normally deacetylated during erythroid maturation. When over-expressed at levels higher than the physiological range, Myc blocked erythroid differentiation and the cells continued to proliferate in cytokine-free, serum-containing culture medium with an early erythroblast morphology. These studies reveal an important dose-dependent function of Myc in regulating terminal maturation in mammalian erythroid cells. Our findings further support the emerging notion that Myc regulates chromatin structure by regulating global histone acetylation states.
Project description:We identified a role for E2F-2 in the regulation of erythroblast nuclear condensation and enucleation. To help define the mechanism by which E2F-2 regulates these processes, we performed RNA-sequencing on undifferentiated hematopoietic cells and sorted, orthochromatic erythroblasts obtained from wildtype and E2F-2 knockout animals. In undifferentiated progenitor cells we find a limited number of differentially expressed genes associated with E2F-2-loss, likely due to compensation by other E2F family members. However, in late-stage erythroblasts, loss of E2F-2 results in the down-regulation of over 1200 genes. Our subsequent analyses focused on the role of a particular mitotic kinase, Citron Rho-interacting kinase, which we find is induced in an E2F-2-dependent manner during terminal erythroid maturation and identify as a novel regulator of erythroblast enucleation.
Project description:Using RNA-seq technology, we quantitatively determined the expression profile of microRNAs during mouse terminal erythroid differentiation. CFU-E erythroid progenitors were isolated from E14.5 fetal liver as the Ter119, B220, Mac-1, CD3 and Gr-1 negative, C-Kit positive and 20% high CD71 population. Mature Ter119+ erythroblasts were isolated from E14.5 fetal liver as C-Kit negative and Ter119 positive population. Consistent with nuclear condensation and global gene expression shut down during terminal erythroid differentiation, we found that the majority of microRNAs are downregulated in more mature Ter119+ erythroblasts compared with CFU-E erythroid progenitors. Examination of microRNA expression profiles in 2 cell types
Project description:Using RNA-seq technology, we quantitatively determined the expression profile of microRNAs during mouse terminal erythroid differentiation. CFU-E erythroid progenitors were isolated from E14.5 fetal liver as the Ter119, B220, Mac-1, CD3 and Gr-1 negative, C-Kit positive and 20% high CD71 population. Mature Ter119+ erythroblasts were isolated from E14.5 fetal liver as C-Kit negative and Ter119 positive population. Consistent with nuclear condensation and global gene expression shut down during terminal erythroid differentiation, we found that the majority of microRNAs are downregulated in more mature Ter119+ erythroblasts compared with CFU-E erythroid progenitors.
Project description:Histone deacetylases (HDACs) are a group of enzymes catalyzing the removal of acetyl groups from histone and non-histone proteins. HDACs have been shown to play diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. We show here that of the eleven classic HDAC family members, six of them (HDAC 1,2,3 and HDAC 5,6,7) are expressed in human erythroid cells with HDAC5 significantly up regulated during terminal erythroid differentiation. Knockdown of HDAC5 in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts.
Project description:In malaria infection, Plasmodium spp. parasites accumulate in the bone marrow near sites of erythroid development. While it has been observed that Plasmodium falciparum infection of late-stage erythroblasts can delay terminal erythroid differentiation and enucleation, the mechanism(s) underlying this phenomenon are unknown. Here, we apply RNA-seq after fluorescence-activated cell sorting (FACS) of infected erythroblasts to identify transcriptional responses to direct and indirect interaction with P. falciparum.