Gene expression analyses of three early phases of osteogenic, adipogenic, and chondrogenic differentiation of rat bone marrow mesenchymal stem cells
Ontology highlight
ABSTRACT: To further reveal key mRNAs deciding osteogenic, adipogenic, and chondrogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) in early phases, we have employed next-generation high-throughput transcriptome sequencing to detect the expression of mRNA in rat BMSCs during differentiation.
Project description:We demonstrated the multipotent potential and change of cell identity of human adipose tissue-derived progenitors by subjecting cells to adipogenic, chondrogenic, and osteogenic induction. mRNA transcriptomic profiling results demonstrated the detection of lineage-specific markers.
Project description:Bone marrow stromal cells (BMSCs) were isolated from the femora and tibiae of irtTA-GBD*-TAg transgenic mice. Using cellular cloning we established skeletal progenitors with unipotent osteogenic and adipogenic properties. Previous RNA-seq analysis of more progenitor types revealed differential expression in members of the Interferon-gamma (IFNγ) signaling pathway. Treatment of adipogenic progenitors with IFNγ inhibited adipogenesis and promoted osteogenesis. RNA-seq analysis of osteogenic, adipogenic and IFNγ treated adipogenic clones revealed factors controlling the osteogenic versus adipogenic commitment of bone marrow skeletal progenitors.
Project description:Pathological processes like osteoporosis or steroid-induced osteonecrosis of the hip are accompanied by increased bone marrow adipogenesis. Such disorder of adipogenic/osteogenic differentiation, which affects also bone marrow derived mesenchymal stem cells (BMSCs) contributes to bone loss during aging. Therefore, we investigated the effects of extracellular vesicles (EVs) isolated from human (h)BMSCs during different stages of osteogenic differentiation on osteogenic and adipogenic differentiation capacity of naïve hBMSCs.
Project description:Gene expression analyses of three early phases of osteogenic, adipogenic, and chondrogenic differentiation of rat bone marrow mesenchymal stem cells
Project description:The study aims to identify early osteogenic and chondrogenic lineage markers with time course bulk RNA-seq profiling of 3-day differentiation induced cells.
Project description:While the accumulation of bone marrow adipose tissue has been positively associated with aging and high fat diet, the physiological consequences are mostly unknown. It is well established that osteogenic and adipogenic progenitors share a common developmental origin.Unfavorable microenvironmental changes may bias these cell populations towards an adipogenic fate, which in turn could negatively influence bone homeostasis. Our previously collected data from mice reveal a high plasticity of the mesenchymal osteo-adipogenic stem cell population. Therefore, we now wish to perform by RNA-seq in defined cell population with varying adipogenic commitment within this heterogeneous stem cell pool.This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:Gene Expression analysis of a differentiation timeseries of human Mesenchymal Stem Cells (hMSCs) in the presence of adipogenic/osteogenic factors. hMSCs differentiate into fat cells when treated with dexamethasone (10^-6 M), insulin (10 ug/ml), rosiglitazone (10^-7 M) and IBMX (250 uM). TGFbeta (5 ng/ml) inhibits this process and redirects these cells to differentiate into bone cells. Introduction: Patients suffering from osteoporosis show an increased number of adipocytes in their bone marrow, concomitant with a reduction in the pool of human mesenchymal stem cells (hMSCs) that are able to differentiate into osteoblasts, thus leading to suppressed osteogenesis. Methods: In order be able to interfere with this process, we have investigated in vitro culture conditions whereby adipogenic differentiation of hMSCs is impaired and osteogenic differentiation is promoted. By means of gene expression microarray analysis, we have investigated genes which are potential targets for prevention of fat cell differentiation. Results: Our data show that BMP2 promotes both adipogenic and osteogenic differentiation of hMSCs, while TGFβ inhibits differentiation into both lineages. However, when cells are cultured under adipogenic differentiation conditions, which contains cAMP-enhancing agents such as IBMX of PGE2, TGFβ promotes osteogenic differentiation, while at the same time inhibiting adipogenic differentiation. Gene expression and immunoblot analysis indicated that cAMP-induced suppression of HDAC5 levels plays an important role in the inhibitory effect of TGFβ on osteogenic differentiation. By means of gene expression microarray analysis, we have investigated genes which are downregulated by TGFβ under adipogenic differentiation conditions and may therefore be potential targets for prevention of fat cell differentiation. We thus identified 9 genes for which FDA-approved drugs are available. Our results show that drugs directed against the nuclear hormone receptor PPARG, the metalloproteinase ADAMTS5 and the aldo-keto reductase AKR1B10 inhibit adipogenic differentiation in a dose-dependent manner, although in contrast to TGFβ they do not appear to promote osteogenic differentiation. Conclusions: The approach chosen in this study has resulted in the identification of new targets for inhibition of fat cell differentiation, which may not only be relevant for prevention of osteoporosis, but also of obesity. hMSCs were induced to differentiate in the presence dexamethasone, insulin and rosiglitazone, to which was added either 50 ng/ml BMP2; BMP2 + TGFbeta; BMP2 + IBMX; BMP2 + TGFbeta + IBMX.
Project description:Osteogenic differentiation of human mesenchymal stromal cells (hMSCs) may potentially be used in cell-based bone tissue-engineering applications to enhance the bone-forming potential of these cells. Osteogenic differentiation and adipogenic differentiation are thought to be mutually exclusive, and although several signaling pathways and cues that induce osteogenic or adipogenic differentiation, respectively, have been identified, there is no general consensus on how to optimally differentiate hMSCs into the osteogenic lineage. Some pathways have also been reported to be involved in both adipogenic and osteogenic differentiation, as for example, the protein kinase A (PKA) pathway, and the aim of this study was to investigate the role of cAMP/PKA signaling in differentiation of hMSCs in more detail. We show that activation of this pathway with dibutyryl-cAMP results in enhanced alkaline phosphatase expression, whereas another cAMP analog induces adipogenesis in long-term mineralization cultures. Adipogenic differentiation, induced by 8-bromo-cAMP, was accompanied by stronger PKA activity and higher expression of cAMP-responsive genes, suggesting that stronger activation correlates with adipogenic differentiation. In addition, a whole-genome expression analysis showed an increase in expression of adipogenic genes in 8-br-cAMP-treated cells. Furthermore, by means of quantitative polymerase chain reaction, we show differences in peroxisome proliferator-activated receptor-gamma activation, either alone or in combination with dexamethasone, thus demonstrating differential effects of the PKA pathway, most likely depending on its mode of activation.
Project description:Ganglioside profiling (LC-MSn) of MSCs and differentiated adipogenic (fat), chondrogenic (cartilage), and osteogenic (bone) lineage; LCMS data to publication:
https://doi.org/10.1021/jacsau.2c00230