Transcriptomic profile of Tfh cells during intestinal helminth infection
Ontology highlight
ABSTRACT: The goal of this study was to define the regulation of Tfh cell response during intestinal helminth infection. Using the helminth Trichuris muris, we performed RNA-seq analysis on Tfh cells that develop during acute vs chronic helminth infection. We found that the transcriptomic profile of acute vs chronic induced Tfh cells are distinct and they express Th2/Th1-associated genes, respectively.
Project description:The goal of this study was to define the regulation of Tfh cell response during intestinal helminth infection. Using the helminth Trichuris muris, we performed ATAC-seq analysis on Tfh cells that develop during acute vs chronic helminth infection. We found that the epigenetic profile of acute vs chronic induced Tfh cells are distinct by adopting Th2 and Th1 cell phenotypes, respectively. For example, Th2-associated genes such as the Il4 locus was more accessible in acute-induced Tfh cells (and vice versa for Th1-associated genes in chronic-induced Tfh cells).
Project description:Trichuris muris (T. muris) induces chronic colitis in susceptible mouse strains with clinical, histological, and immunological homology to human Crohn's disease. Gene expression profiling was performed on colon tissue of resistant (BALB/c) and susceptible (AKR) mice following T. muris infection.
Project description:During chronic viral infection, the inflammatory function of CD4 T cells becomes gradually attenuated. Concurrently, Th1 cells progressively acquire the capacity to secrete the cytokine IL-10, a potent suppressor of antiviral T cell responses. To determine the transcriptional changes that underlie this T cell adaption process, we applied a single-cell RNA-sequencing approach and assessed the heterogeneity of IL-10-expressing CD4 T cells during chronic infection. Unexpectedly, our analyses revealed an IL-10-producing population with a robust Tfh-signature. Using IL-10 and IL-21 double-reporter mice, we further demonstrate that IL-10+IL-21+co-producing Tfh cells arise predominantly during chronic but not acute LCMV infection. Importantly, depletion of IL-10+IL-21+co-producing CD4 T cells or deletion of Il10 specifically in Tfh cells resulted in impaired humoral immunity and viral control. Mechanistically, B cell-intrinsic IL-10 signaling was required for sustaining germinal center reactions. Lastly, we demonstrate that IL-27 and type I IFNs differentially regulate the formation of this protective IL-10-producing Tfh subset. Thus, our findings elucidate a critical role for Tfh-derived IL-10 in promoting humoral immunity during persistent viral infection.
Project description:CD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation. Analysis of in vivo polyclonal GC Tfh vs Tfh vs Non-Tfh eight days after LCMV viral infection. Analysis of in vivo follicular helper CD4 T cells (CXCR5high GL7low), versus germinal center follicular helper CD4 T cells (CXCR5hi GL7hi), versus non-follicular helper CD4 T cells (CXCR5low) eight days after viral infection.
Project description:The intestine is a site of diverse functions including digestion, nutrient absorption, immune surveillance, and microbial symbiosis. As such, intestinal homeostasis is vital for overall wellbeing. Faecal microRNAs (miRNAs) offer valuable non-invasive insights into the transcriptional state of the intestine. However, typical faecal miRNA yields and profiles remain incompletely characterised. Here, we develop an optimised protocol for faecal miRNA detection, and describe a reproducible murine faecal miRNA profile across several studies by performing a meta-analysis. By examining faecal miRNA changes during chronic infection with the gastrointestinal helminth, Trichuris muris, we identify the altered expression of miRNAs associated with fibrosis, barrier integrity and wound healing. Fibrosis was confirmed in vivo, suggesting a role for these miRNAs in regulating wound healing during chronic infection where the production of classical wound healing Th2 cytokines are low. Further implementations of this technique can identify novel hypotheses and therapeutic strategies in diverse disease contexts.
Project description:T follicular helper cells (TFH) are critical for the development and maintenance of germinal centers (GC) and humoral immune responses. During chronic HIV/SIV infection TFH accumulate, possibly as a result of antigen persistence. The HIV/SIV-associated TFH expansion may also reflect lack of regulation by suppressive follicular regulatory CD4+ T-cells (TFR). TFR are natural regulatory T-cells (TREG) that migrate into the follicle and, similarly to TFH, up-regulate CXCR5, Bcl-6, and PD1. Here we identified TFR as CD4+CD25+FoxP3+CXCR5+PD1hiBcl-6+ within lymph nodes of rhesus macaques (RM) and confirmed their localization within the GC by immunohistochemistry. RNA sequencing showed that TFR exhibit a distinct transcriptional profile with shared features of both TFH and TREG, including intermediate expression of FoxP3, Bcl-6, PRDM1, IL-10, and IL-21. In healthy, SIV-uninfected RM, we observed a negative correlation between frequencies of TFR and both TFH and GC B-cells as well as levels of CD4+ T-cell proliferation. Following SIV infection, the TFR/TFH ratio was reduced with no change in the frequency of TREG or TFR within the total CD4+ T-cell pool. Finally, we examined whether higher levels of direct virus infection of TFR were responsible for their relative depletion post-SIV infection. We found that TFH, TFR and TREG sorted from SIV- infected RM harbor comparable levels of cell-associated viral DNA. Our data suggests that TFR may contribute to the regulation and proliferation of TFH and GC B-cells in vivo and that a decreased TFR/TFH ratio in chronic SIV infection may lead to unchecked expansion of both TFH and GC B-cells. TFR, TFH, TREG and bulk CD4 cells were sorted from spleens of 5 uninfected and 5 infected RM.
Project description:Purpose: Helminth infection and dietary intake can affect the intestinal microbiota, as well as the immune system. Methods: Here we analyzed the relationship between fecal microbiota and blood profiles of indigenous Malaysians, referred to locally as Orang Asli, in comparison to urban participants from the capital city of Malaysia, Kuala Lumpur. Results: We found that helminth infections had a larger effect on gut microbial composition than did dietary intake or blood profiles. Trichuris trichiura infection intensity also had the strongest association with blood transcriptional profiles. By characterizing paired longitudinal samples collected before and after deworming treatment, we determined that changes in serum zinc and iron levels among the Orang Asli were driven by changes in helminth infection status, independent of dietary metal intake. Serum zinc and iron levels were associated with changes in the abundance of several microbial taxa. Conclusions: There is considerable interplay between helminths, micronutrients and the microbiota on the regulation of immune responses in humans.