Other

Dataset Information

0

Systematic exploration of dynamic splicing networks reveals conserved multi-stage regulators of neurogenesis [SPARseq]


ABSTRACT: Alternative splicing (AS) is a critical regulatory layer, yet factors controlling networks of functionally coordinated splicing events during developmental transitions remain poorly understood. Here, we employ a multifaceted screening strategy to define factors that control dynamically regulated splicing events associated with neurogenesis. Among numerous previously unknown regulators, Rbm38 acts widely to negatively impact neural AS through Ptbp1-dependent and -independent mechanisms. Puf60, a ubiquitous splicing factor, is surprisingly found to promote neural splicing patterns. This activity is determined by a vertebrate-conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at multiple stages of neural Rbm38etc. Single-cell transcriptome analyses further reveal critical, multi-stage roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results thus reveal key new regulators of neurogenesis and establish how a single exon in a widely expressed splicing factor orchestrates temporal control over cell Rbm38etc.

ORGANISM(S): Mus musculus

PROVIDER: GSE186384 | GEO | 2022/07/15

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2022-07-15 | GSE186388 | GEO
2022-07-15 | GSE186387 | GEO
2022-07-15 | GSE186386 | GEO
2022-07-15 | GSE186385 | GEO
2013-07-29 | E-GEOD-49293 | biostudies-arrayexpress
2013-07-29 | GSE49293 | GEO
2018-05-25 | E-MTAB-6010 | biostudies-arrayexpress
2014-09-11 | E-GEOD-57278 | biostudies-arrayexpress
2014-09-11 | GSE57278 | GEO
2019-04-17 | GSE123927 | GEO