Project description:The aim of this study is to analyze the transcriptional effects of Aire deficiency in the thymus, using the Affymetrix MoGene platform to analyze variation in exon usage MECs were isolated from 4-6 wk-old WT or Aire KO ((B6xNOD)F1 background) mice. Three WT and three Aire-KO mice taken individually were used.
Project description:The aim of this study is to analyze the transcriptional effects of Aire deficiency in the thymus, using the Affymetrix MoGene platform to analyze variation in exon usage
Project description:Background: In order to become functionally competent but harmless mediators of the immune system, T cells undergo a strict educational program in the thymus, where they learn to discriminate between self and non-self. This educational program is, to a large extent, mediated by medullary thymic epithelial cells (mTECs) that have a unique capacity to express, and subsequently present a large fraction of body antigens. While the scope of promiscuously expressed genes by mTECs is well established, relatively little is known about the expression of variants that are generated by co- and post-transcriptional processes. Results: Our study reveals that in comparison to other cell types, mTECs display significantly higher levels of alternative splicing, as well as A-to-I and C-to-U RNA editing, which thereby further expand the diversity of their self-antigen repertoire. Interestingly, Aire, the key mediator of mTECs promiscuous gene expression, plays a limited role in the regulation of these transcriptional processes. Conclusions: Our results highlight RNA processing as another layer by which the immune system assures a comprehensive self-representation in the thymus which is required for the establishment of self-tolerance and prevention of autoimmunity. Identification of the number of genes expressed in Aire-KO MEChi
Project description:The deficiency of Aire, a transcriptional regulator whose defect results in the development of autoimmunity, is associated with reduced expression of tissue-restricted self-Ags (TRAs) in medullary thymic epithelial cells (mTECs). Although the mechanisms underlying Aire-dependent expression of TRAs need to be explored, the physical identification of the target(s) of Aire has been hampered by the low and promiscuous expression of TRAs. We have tackled this issue by engineering mice with augmented Aire expression. Integration of the transcriptomic data from Aire-augmented and Aire-deficient mTECs revealed that a large proportion of so-called Aire-dependent genes, including those of TRAs, may not be direct transcriptional targets downstream of Aire. Rather, Aire induces TRA expression indirectly through controlling the heterogeneity of mTECs, as revealed by single-cell analyses. In contrast, Ccl25 emerged as a canonical target of Aire, and we verified this both in vitro and in vivo. Our approach has illuminated the Aire?s primary targets while distinguishing them from the secondary targets.
Project description:The experiment was designed to compare transcriptomic differences between WT and Ccr6 KO Tregs during activation. WT and Ccr6 KO Tregs, cells were isolated from mice and cultured in vitro for 3 days with activation using anti-CD3/CD28 beads. Total RNA was extracted using the Trizol method. Quantity and quality were assessed using a Thermo Scientific™ NanoDrop™ 2000/2000c Spectrophotometer. Novogene Corporation Inc prepared the RNA-seq 250-300 bp insert cDNA library. Illumina HiSeq platform PE150 sequencing was used for sequencing, yielding 20M raw reads/sample. Mus Musculus mm39 was used as the reference genome for alignment.