RNA expression profiles in CD34+ and in stromal cells of patients with refractory anemia with ringed sideroblasts
Ontology highlight
ABSTRACT: Myelodysplastic syndromes (MDS) are a group of clonal hematological disorders characterized by ineffective hematopoiesis with morphological evidence of marrow cell dysplasia resulting in peripheral blood cytopenia. Microarray technology has permitted a refined high-throughput mapping of the transcriptional activity in the human genome. Noncoding-RNAs (ncRNAs) transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression, and in the regulation of exon-skipping and intron retention. Characterization of ncRNAs in progenitor cells and stromal cells of MDS patients could be strategic for understanding gene expression regulation in this disease. In this study, gene expression profiles of CD34+ and stromal cells of MDS patients with refractory anemia with ringed sideroblasts (RARS) subgroup were compared those of healthy individuals, using 44k combined intron-exon oligoarrays, which included probes for protein-coding genes, for sense and antisense strands of totally intronic noncoding (TIN) and for partially intronic noncoding (PIN) RNAs. In CD34+ cells of MDS-RARS patients, 217 genes were significantly differentially expressed (q-value < 0.01) in comparison to healthy individuals, of which 68 (31%) were noncoding transcripts. In stromal cells of MDS-RARS, 13 genes were significantly differentially expressed (q-value < 0.05) in comparison to healthy individuals, of which 4 (30%) were noncoding transcripts. These results demonstrated, for the first time, in CD34+ cells and stromal cells the differential ncRNA expression profile between MDS-RARS and healthy individuals, suggesting that ncRNAs may play an important role during the development of myelodysplastic syndromes.
ORGANISM(S): Homo sapiens
PROVIDER: GSE18911 | GEO | 2010/06/22
SECONDARY ACCESSION(S): PRJNA121327
REPOSITORIES: GEO
ACCESS DATA