Transcriptomics

Dataset Information

0

High Resolution Slide-seqV2 Spatial Transcriptomics Enables Discovery of Disease-Specific Cell Neighborhoods and Pathways


ABSTRACT: High resolution spatial transcriptomics is a transformative technology that enables mapping of RNA expression directly from intact tissue sections; however, its utility for the elucidation of disease processes and therapeutically actionable pathways remain largely unexplored. Here we applied Slide-seqV2 to mouse and human kidneys, in healthy and in distinct disease paradigms. First, we established the feasibility of Slide-seqV2 in human kidney by analyzing tissue from 9 distinct donors, which revealed a cell neighborhood centered around a population of LYVE1+ macrophages. Second, in a mouse model of diabetic kidney disease, we detected changes in the cellular organization of the spatially-restricted kidney filter and blood flow regulating apparatus. Third, in a mouse model of a toxic proteinopathy, we identified previously unknown, disease-specific cell neighborhoods centered around macrophages. In a spatially-restricted subpopulation of epithelial cells, we also found perturbations in 77 genes associated with the unfolded protein response (UPR), including Tmed9. Treatment with a TMED9-targeting compound showed efficient removal of toxic mutant proteins and reversal of the UPR. Our studies illustrate and experimentally validate the utility of Slide-seqV2 for the discovery of disease-specific cell neighborhoods and actionable targets.

ORGANISM(S): Mus musculus

PROVIDER: GSE190094 | GEO | 2022/01/28

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

| PRJNA785857 | ENA
2025-01-07 | GSE250397 | GEO
2025-01-07 | GSE250396 | GEO
2025-01-07 | GSE250395 | GEO
2024-10-18 | GSE260798 | GEO
2024-10-18 | GSE260797 | GEO
2024-10-18 | GSE260800 | GEO
2024-10-18 | GSE260799 | GEO
2022-10-10 | GSE199711 | GEO
2022-10-10 | GSE183276 | GEO