Transcriptomic responses to heat-stress in invasive and native blue mussels (genus Mytilus)
Ontology highlight
ABSTRACT: [original Title] Transcriptomic responses to heat-stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. Invasive species are increasingly prevalent in marine ecosystems worldwide. Although many studies have examined the ecological effects of invasives, little is known about physiological mechanisms that might contribute to invasive success. The mussel Mytilus galloprovincialis, a native of the Mediterranean Sea, is a successful invader on the central and southern coasts of California, where it has largely displaced the native congener, Mytilus trossulus. It has been previously shown that thermal responses of several physiological traits may underlie the capacity of M. galloprovincialis to out-compete M. trossulus in warm habitats. To elucidate possible differences in stress-induced gene expression between these congeners, we developed an oligonucleotide microarray with 8,874 probes representing 4,488 different genes that recognized mRNAs of both species. In acute heat-stress experiments, 1,531 of these genes showed temperature-dependent changes in gene expression that were highly similar in the two congeners. In contrast, 96 genes showed species-specific responses to heat-stress, functionally characterized by their involvement in oxidative stress, proteolysis, energy metabolism, ion transport, cell signaling, and cytoskeletal reorganization. The gene that showed the biggest difference between the species was the gene for the molecular chaperone small heat shock protein 24, which was highly induced in M. galloprovincialis and showed only a small change in M. trossulus. These different responses to acute heat-stress may help to explain—and predict—the invasive success of M. galloprovincialis in a warming world.
ORGANISM(S): Mytilus californianus Mytilus galloprovincialis Mytilus trossulus
PROVIDER: GSE19031 | GEO | 2010/10/11
SECONDARY ACCESSION(S): PRJNA120631
REPOSITORIES: GEO
ACCESS DATA