ABSTRACT: RNAseq of osteocyte and osteoblasts enriched bone fraction from the tibiae of 6 week-old male mice with a conditional deletion of Hnf4a in osteoblasts and and WT littermates.
Project description:Purpose of arrays were to determine what the effect of deletion of Mbtps1 gene was on gene expression of osteocytes in bone in vivo. DMP1 cre driver was used to delete the Mbtps1 gene in osteocytes and osteoblasts in bone. We then isolated osteocyte enriched bone particles from 40 week old male mice to determine the effect of this deletion on gene expression. We have previously shown that Mbtps1 is needed for transcription of Phex, DMP1, and MEPE genes in osteoblasts in culture. Arrays showed these genes were reduced as expected in osteocytes in vivo. Controls represent osteocyte enriched bone from 40 week old littermates. Also, as expected, Mbtps1 expression was reduced in these knockout mice
Project description:To understand how HNF4A loss affects gene expression in mouse liver. We used control and HNF4A KO mouse livers for RNA sequencing. In addition, we also examined the effect of HNF4A gain in mouse fibroblast cells by ectropically expressing HNF4A in NIH3T3 cell to identify genes that are regulated by HNF4A.
Project description:RNAseq of liver of mice with a conditional overexpression of Cterminal FGF23 peptide in osteoblasts and osteocytes and WT littermates 6 hours post-injection of 250ng/g of recombinant murine Il-1B or saline.
Project description:To determine whether the intestine-restricted transcription factor (TF) CDX2 functionally interacts with the endoderm-wide TF HNF4A, we crossed tissue-specific conditional Cdx2 and Hnf4a knockout mice to generate compound mutant mice. We used RNA-sequencing to profile gene expression changes in compound mutant mice compared to control mice. The compound mutant mice had a significantly worse phenotype than either single mutant, and gene expression was significantly perturbed in compound mutants compared to control mice. Total RNA isolated from control and compound mutant (Hnf4a-del;Cdx2-del) jejunal mouse intestinal epithelium was prepared for sequencing using the TruSeq RNA Sample Preparation Kit (Illumina) according to the manufacturer's instructions. 75-base-pair single-end reads were sequenced on an Illumina NextSeq 500 instrument. The data include 2 independent biological replicates per genotype.
Project description:Some cuboidal osteoblasts differentiate into bone-embedded, dendrite-bearing osteocytes through the poorly-understood process of osteocytogenesis. Here, we report that the transcription factor Sp7 plays an essential role in osteocytogenesis. Severe defects in bone integrity and osteocyte dendrite morphology are noted in mice lacking Sp7 at the stage of the osteoblast-to-osteocyte transition. In osteocytes, Sp7 controls expression of a neuronally-enriched gene network. Analysis of the osteocyte-specific Sp7 cistrome reveals distinct genomic binding motifs and target sites distinct from those in osteoblasts. Amongst osteocyte-specific Sp7 targets, the secreted peptide osteocrin rescues Sp7-deficient defects. Single-cell transcriptional profiling of cells undergoing osteocytogenesis identifies novel Sp7-dependent transitional cell types enriched in genes linked to human fracture risk. Finally, humans with an SP7 R316C mutation display osteocyte morphology defects similar to those observed in mouse models. These findings demonstrate that cuboidal osteoblasts use a neuronally-enriched Sp7/osteocrin gene expression program to differentiate into dendrite-bearing osteocytes.