Genomics

Dataset Information

0

A role for the Saccharomyces cerevisiae Rtt109 histone acetyltransferase in R-loop homeostasis and associated genome instability


ABSTRACT: The stability of the genome is occasionally challenged by the formation of DNA-RNA hybrids and R-loops, which can be influenced by the chromatin context. This is mainly due to the fact that DNA-RNA hybrids hamper the progression of replication forks, leading to fork stalling and, ultimately, DNA breaks. Through a specific screening of chromatin modifiers performed in the yeast Saccharomyces cerevisiae, we have found that the Rtt109 histone acetyltransferase is involved in several steps of R-loop-metabolism and their associated genetic instability. On one hand, Rtt109 prevents DNA-RNA hybridization by the acetylation of histone H3 lysines 14 and 23, and on the other hand, it is involved in the repair of replication-born DNA breaks, such as those that can be caused by R-loops, by acetylating lysines 14 and 56. In addition, Rtt109 loss renders cells highly sensitive to replication stress in combination with R-loop-accumulating THO-complex mutants. Our data evidence that the chromatin context simultaneously influences the occurrence of DNA-RNA hybrid-associated DNA damage and its repair, adding complexity to the source of R-loop-associated genetic instability.

ORGANISM(S): Saccharomyces cerevisiae

PROVIDER: GSE192701 | GEO | 2022/07/13

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2023-08-08 | GSE240391 | GEO
2018-06-27 | GSE113580 | GEO
2021-11-25 | PXD024517 | Pride
2022-11-02 | PXD034331 | Pride
2020-05-25 | GSE127979 | GEO
2009-08-08 | GSE17552 | GEO
2024-08-25 | PXD054611 | Pride
2020-06-20 | GSE108172 | GEO
2021-09-09 | PXD018207 | Pride
2021-05-10 | GSE154631 | GEO