Project description:We performed genotyping of Neuroblastoma Primary tumors using Illumina HumanHap 550 - v1,v3,v3duo and 610 Quad genotyping beadchips.
Project description:This dataset contains gene expression data from the NRC series (Neuroblastoma Research Consortium) for a total of 283 primary neuroblastoma tumors. All tumor samples are fully annotated including patient age at diagnosis, overall and progresison free survival and MYCN amplification status, enabling subgroup analysis, survival analysis and gene expression network analysis.
Project description:Solid tumors are complex organs comprising neoplastic cells and stroma, yet cancer cell lines remain widely used to study tumor biology, biomarkers and experimental therapy. Here, we performed a fully integrative analysis of global proteomic data comparing human colorectal cancer (CRC) cell lines to primary tumors and normal tissues. We found a significant, systematic difference between cell line and tumor proteomes, with a major contribution from tumor stroma proteomes. Nevertheless, cell lines overall mirrored the proteomic differences observed between tumors and normal tissues, in particular for genetic information processing and metabolic pathways, indicating that cell lines provide a system for the study of the intrinsic molecular programs in cancer cells. Intersection of cell line data with tumor data provided insights into tumor cell specific proteome alterations driven by genomic alterations. Our integration of cell line proteogenomic data with drug sensitivity data highlights the potential of proteomic data in predicting therapeutic response. We identified representative cell lines for the proteomic subtypes of primary tumors, and linked these to drug sensitivity data to identify subtype-specific drug candidates.
Project description:RNA expression profiles of 105 primary neuroblastomas derived from customized 4 x 44k oligonucleotide microarrays (Agilent Technologies). These profiles are part of an integrative study combining genomewide epigenetic profiles with transcriptome data of the same neuroblastoma cohort. Tumors were derived from 40 low-risk, 9 intermediate-risk and 56 high-risk patients. Transcription profiles of 105 primary neuroblastomas derived from customized 4 x 44k oligonucleotide microarrays (Agilent Technologies)
Project description:RNA expression profiles of 105 primary neuroblastomas derived from customized 4 x 44k oligonucleotide microarrays (Agilent Technologies). These profiles are part of an integrative study combining genomewide epigenetic profiles with transcriptome data of the same neuroblastoma cohort. Tumors were derived from 40 low-risk, 9 intermediate-risk and 56 high-risk patients.
Project description:Stromal contamination is one of the major confounding factors in the analysis of primary solid tumor samples by single nucleotide polymorphism (SNP) arrays. As we propose to employ genome-wide SNP microarray analysis as a diagnostic platform for neuroblastoma, the sensitivity, specificity, and accuracy of these studies must be optimized. In order to investigate the effects of stroma, we derived early passage cell lines from nine primary tumors and compared their genomic signature with that of the primary tumors by 100K SNP array analysis. The average concordance between tumor and cell line for raw LOH (loss of heterozygosity) calls was 96% (range 91%-99%) and for raw copy number alterations (CNA), 71% (range 43%-87%). In general, there were a larger number of LOH events identified in the cell lines compared to the matched tumor samples (mean increase 3.2% ± 1.9%). We have developed an algorithm that shows that the presence of stroma contributes to under-reporting of LOH and copy number loss (CNL). Notable findings in this sample set were uniparental disomy (UPD) of chromosome arms 11p, 1q, 14q, and 15q and a novel area of amplification on chromosome band 11p15. Our analysis demonstrates that LOH was identified significantly more often in derived cell lines compared to the original tumor samples. While these may in part be due to clonal selection during adaptation to tissue culture, our study indicates contamination by normal stromal elements may be a major contributing factor in underestimation of LOH and CNL events. Keywords: genome wide SNP analysis Nine human neuroblastoma tumor samples with paired blood samples and derivative cell lines