High-resolution translatome analysis reveals cortical cell programs during early soybean nodulation
Ontology highlight
ABSTRACT: The TRAP-seq process is dependent on the expression of a cell layer-specific His-FLAG-tagged ribosomal protein L18 (HF-GmRPL 18), which allows for the immunoprecipitation of ribosomes with their corresponding mRNA to produce tissue-specific translatomes (Zanetti et al., 2005; Castro‐Guerrero et al., 2016).To capture events occurring in the cortex during the early stages of infection and initial cortical cell divisions, we inoculated plants and performed a time-course collection of root samples at 72- and 96-hour post inoculation (hpi) followed by TRAP-seq. Immunoblot analysis indicated that an adequate amount of protein was present for immunoprecipitation. To study rhizobial-induced transcriptional changes in the cortex during early nodule development, we identified a soybean promoter (Glyma.18g53890, Figure 1B) expressed exclusively in the cortex cells using LCM (Kerk et al., 2003; Casson et al., 2008) followed by transcriptional analysis. The cortex-specific promoter was used to drive the expression of GmRPL18 in soybean hairy roots. To capture events occurring in the cortex during the early stages of infection and initial cortical cell divisions, we inoculated plants and performed a time-course collection of root samples at 72- and 96-hour post inoculation (hpi) followed by TRAP-seq. Immunoblot analysis indicated that an adequate amount of protein was present for immunoprecipitation (Figure 1C). Taken together, time-course cortex-specific TRAP-seq was established for studying of early nodule development in soybean.
ORGANISM(S): Glycine max
PROVIDER: GSE192785 | GEO | 2022/03/21
REPOSITORIES: GEO
ACCESS DATA