Transcriptional constraint of EWS/FLI by an ETS transcription factor promotes Ewing sarcoma growth [CUT&Tag]
Ontology highlight
ABSTRACT: Pediatric cancers frequently harbor sentinel mutations involving transcription factors (TFs) that dysregulate normal development. A recurrent mechanism involves the ability of mutant TFs to co-opt cell lineage-specific, activating TFs to promote cancer growth. Ewing sarcoma, the second most common pediatric bone cancer, is defined by the presence of a 11;22 chromosomal translocation fusing the N-terminus of the EWS protein with the C-terminal DNA binding domain of an ETS (E26 Transformation Specific) TF family member, most commonly (85-90% of cases), FLI1. The EWS/FLI fusion exhibits the neomorphic ability to pioneer de novo enhancers at repeating 5’-GGAA-3’ motifs in the cell-of-origin, which has not been identified. To date, efforts to elucidate the key mechanisms by which EWS/FLI promotes oncogenesis have prioritized identifying the genes that are profoundly activated by EWS/FLI and highly expressed in Ewing sarcoma compared to other cancers, with particular focus on transcription factors capable of altering cell state. However, it is not known whether, globally, these genes constitute the most critical drivers of Ewing sarcoma cell growth. Here, we describe the results of an unbiased deletion screen revealing that the wild-type repressive ETS family TF, ETV6 (ETS Variant 6, or TEL), is a novel and most critical TF dependency specific to Ewing sarcoma. We demonstrate that the repressive activity of ETV6 constrains EWS/FLI gene activation at GGAA repeat enhancers to promote Ewing sarcoma cell growth.
Project description:Pediatric cancers frequently harbor sentinel mutations involving transcription factors (TFs) that dysregulate normal development. A recurrent mechanism involves the ability of mutant TFs to co-opt cell lineage-specific, activating TFs to promote cancer growth. Ewing sarcoma, the second most common pediatric bone cancer, is defined by the presence of a 11;22 chromosomal translocation fusing the N-terminus of the EWS protein with the C-terminal DNA binding domain of an ETS (E26 Transformation Specific) TF family member, most commonly (85-90% of cases), FLI1. The EWS/FLI fusion exhibits the neomorphic ability to pioneer de novo enhancers at repeating 5’-GGAA-3’ motifs in the cell-of-origin, which has not been identified. To date, efforts to elucidate the key mechanisms by which EWS/FLI promotes oncogenesis have prioritized identifying the genes that are profoundly activated by EWS/FLI and highly expressed in Ewing sarcoma compared to other cancers, with particular focus on transcription factors capable of altering cell state. However, it is not known whether, globally, these genes constitute the most critical drivers of Ewing sarcoma cell growth. Here, we describe the results of an unbiased deletion screen revealing that the wild-type repressive ETS family TF, ETV6 (ETS Variant 6, or TEL), is a novel and most critical TF dependency specific to Ewing sarcoma. We demonstrate that the repressive activity of ETV6 constrains EWS/FLI gene activation at GGAA repeat enhancers to promote Ewing sarcoma cell growth.
Project description:Pediatric cancers frequently harbor sentinel mutations involving transcription factors (TFs) that dysregulate normal development. A recurrent mechanism involves the ability of mutant TFs to co-opt cell lineage-specific, activating TFs to promote cancer growth. Ewing sarcoma, the second most common pediatric bone cancer, is defined by the presence of a 11;22 chromosomal translocation fusing the N-terminus of the EWS protein with the C-terminal DNA binding domain of an ETS (E26 Transformation Specific) TF family member, most commonly (85-90% of cases), FLI1. The EWS/FLI fusion exhibits the neomorphic ability to pioneer de novo enhancers at repeating 5’-GGAA-3’ motifs in the cell-of-origin, which has not been identified. To date, efforts to elucidate the key mechanisms by which EWS/FLI promotes oncogenesis have prioritized identifying the genes that are profoundly activated by EWS/FLI and highly expressed in Ewing sarcoma compared to other cancers, with particular focus on transcription factors capable of altering cell state. However, it is not known whether, globally, these genes constitute the most critical drivers of Ewing sarcoma cell growth. Here, we describe the results of an unbiased deletion screen revealing that the wild-type repressive ETS family TF, ETV6 (ETS Variant 6, or TEL), is a novel and most critical TF dependency specific to Ewing sarcoma. We demonstrate that the repressive activity of ETV6 constrains EWS/FLI gene activation at GGAA repeat enhancers to promote Ewing sarcoma cell growth.
Project description:Pediatric cancers frequently harbor sentinel mutations involving transcription factors (TFs) that dysregulate normal development. A recurrent mechanism involves the ability of mutant TFs to co-opt cell lineage-specific, activating TFs to promote cancer growth. Ewing sarcoma, the second most common pediatric bone cancer, is defined by the presence of a 11;22 chromosomal translocation fusing the N-terminus of the EWS protein with the C-terminal DNA binding domain of an ETS (E26 Transformation Specific) TF family member, most commonly (85-90% of cases), FLI1. The EWS/FLI fusion exhibits the neomorphic ability to pioneer de novo enhancers at repeating 5’-GGAA-3’ motifs in the cell-of-origin, which has not been identified. To date, efforts to elucidate the key mechanisms by which EWS/FLI promotes oncogenesis have prioritized identifying the genes that are profoundly activated by EWS/FLI and highly expressed in Ewing sarcoma compared to other cancers, with particular focus on transcription factors capable of altering cell state. However, it is not known whether, globally, these genes constitute the most critical drivers of Ewing sarcoma cell growth. Here, we describe the results of an unbiased deletion screen revealing that the wild-type repressive ETS family TF, ETV6 (ETS Variant 6, or TEL), is a novel and most critical TF dependency specific to Ewing sarcoma. We demonstrate that the repressive activity of ETV6 constrains EWS/FLI gene activation at GGAA repeat enhancers to promote Ewing sarcoma cell growth.
Project description:Pediatric cancers frequently harbor sentinel mutations involving transcription factors (TFs) that dysregulate normal development. A recurrent mechanism involves the ability of mutant TFs to co-opt cell lineage-specific, activating TFs to promote cancer growth. Ewing sarcoma, the second most common pediatric bone cancer, is defined by the presence of a 11;22 chromosomal translocation fusing the N-terminus of the EWS protein with the C-terminal DNA binding domain of an ETS (E26 Transformation Specific) TF family member, most commonly (85-90% of cases), FLI1. The EWS/FLI fusion exhibits the neomorphic ability to pioneer de novo enhancers at repeating 5’-GGAA-3’ motifs in the cell-of-origin, which has not been identified. To date, efforts to elucidate the key mechanisms by which EWS/FLI promotes oncogenesis have prioritized identifying the genes that are profoundly activated by EWS/FLI and highly expressed in Ewing sarcoma compared to other cancers, with particular focus on transcription factors capable of altering cell state. However, it is not known whether, globally, these genes constitute the most critical drivers of Ewing sarcoma cell growth. Here, we describe the results of an unbiased deletion screen revealing that the wild-type repressive ETS family TF, ETV6 (ETS Variant 6, or TEL), is a novel and most critical TF dependency specific to Ewing sarcoma. We demonstrate that the repressive activity of ETV6 constrains EWS/FLI gene activation at GGAA repeat enhancers to promote Ewing sarcoma cell growth.
Project description:Pediatric cancers frequently harbor sentinel mutations involving transcription factors (TFs) that dysregulate normal development. A recurrent mechanism involves the ability of mutant TFs to co-opt cell lineage-specific, activating TFs to promote cancer growth. Ewing sarcoma, the second most common pediatric bone cancer, is defined by the presence of a 11;22 chromosomal translocation fusing the N-terminus of the EWS protein with the C-terminal DNA binding domain of an ETS (E26 Transformation Specific) TF family member, most commonly (85-90% of cases), FLI1. The EWS/FLI fusion exhibits the neomorphic ability to pioneer de novo enhancers at repeating 5’-GGAA-3’ motifs in the cell-of-origin, which has not been identified. To date, efforts to elucidate the key mechanisms by which EWS/FLI promotes oncogenesis have prioritized identifying the genes that are profoundly activated by EWS/FLI and highly expressed in Ewing sarcoma compared to other cancers, with particular focus on transcription factors capable of altering cell state. However, it is not known whether, globally, these genes constitute the most critical drivers of Ewing sarcoma cell growth. Here, we describe the results of an unbiased deletion screen revealing that the wild-type repressive ETS family TF, ETV6 (ETS Variant 6, or TEL), is a novel and most critical TF dependency specific to Ewing sarcoma. We demonstrate that the repressive activity of ETV6 constrains EWS/FLI gene activation at GGAA repeat enhancers to promote Ewing sarcoma cell growth.
Project description:Ewing sarcoma (EwS) is characterized by EWSR1-ETS fusion transcription factors converting polymorphic GGAA microsatellites (mSats) into potent neo-enhancers. Although the paucity of additional mutations makes EwS a genuine model to study principles of cooperation between dominant fusion oncogenes and neo-enhancers, this is impeded by the limited number of well-characterized models. Here we present the Ewing Sarcoma Cell Line Atlas (ESCLA), comprising whole-genome, DNA methylation, transcriptome, proteome, and chromatin immunoprecipitation sequencing (ChIP-seq) data of 18 cell lines with inducible EWSR1-ETS knockdown. The ESCLA shows hundreds of EWSR1-ETS-targets, the nature of EWSR1-ETS-preferred GGAA mSats, and putative indirect modes of EWSR1-ETS-mediated gene regulation, converging in the duality of a specific but plastic EwS signature. We identify heterogeneously regulated EWSR1-ETS-targets as potential prognostic EwS biomarkers. Our freely available ESCLA (http://r2platform.com/escla/) is a rich resource for EwS research and highlights the power of comprehensive datasets to unravel principles of heterogeneous gene regulation by chimeric transcription factors.
Project description:Ewing sarcoma usually expresses the EWS/FLI fusion transcription factor oncoprotein. EWS/FLI regulates myriad genes required for Ewing sarcoma development. EWS/FLI binds GGAA-microsatellite sequences in vivo and in vitro, and these sequences provide EWS/FLI-mediated activation to reporter constructs, suggesting that they function as EWS/FLI-response elements. Genomic GGAA-microsatellites are highly variable and polymorphic. Current data suggest that there is an optimal “sweet-spot” GGAA-microsatellite length (of 18-26 GGAA repeats) that confers maximal EWS/FLI-responsiveness to target genes, but the mechanistic basis for this was not known. We now demonstrate the absolute necessity of an EWS/FLI-bound GGAA-microsatellite in regulation of the NR0B1 gene, as well as for Ewing sarcoma proliferation and oncogenic transformation. Biochemical studies, using recombinant Δ22 (a version of EWS/FLI containing only the FLI portion) demonstrated a stoichiometry of one Δ22-monomer binding to every two consecutive GGAA-repeats on shorter GGAA-microsatellite sequences. Surprisingly, the affinity for Δ22 binding to GGAA-microsatellites significantly decreased, and ultimately became unmeasureable, when the size of the GGAA-microsatellite was increased to the “sweet-spot” length. In contrast, a fully-functional EWS/FLI mutant (Mut9) that retains approximately half of the EWS portion of the fusion showed low affinity for smaller GGAA-microsatellites, but instead significantly increased its affinity at “sweet-spot” microsatellite lengths. Single-gene ChIP and genome-wide ChIP-seq and RNA-seq studies extended these findings to the in vivo setting. Taken together, these data demonstrate the absolute requirement of GGAA-microsatellites as EWS/FLI activating response elements in vivo and reveal an unsuspected novel role for the EWS portion of the EWS/FLI fusion in binding to optimal-length GGAA-microsatellites.
Project description:Ewing sarcoma usually expresses the EWS/FLI fusion transcription factor oncoprotein. EWS/FLI regulates myriad genes required for Ewing sarcoma development. EWS/FLI binds GGAA-microsatellite sequences in vivo and in vitro, and these sequences provide EWS/FLI-mediated activation to reporter constructs, suggesting that they function as EWS/FLI-response elements. Genomic GGAA-microsatellites are highly variable and polymorphic. Current data suggest that there is an optimal “sweet-spot” GGAA-microsatellite length (of 18-26 GGAA repeats) that confers maximal EWS/FLI-responsiveness to target genes, but the mechanistic basis for this was not known. We now demonstrate the absolute necessity of an EWS/FLI-bound GGAA-microsatellite in regulation of the NR0B1 gene, as well as for Ewing sarcoma proliferation and oncogenic transformation. Biochemical studies, using recombinant Δ22 (a version of EWS/FLI containing only the FLI portion) demonstrated a stoichiometry of one Δ22-monomer binding to every two consecutive GGAA-repeats on shorter GGAA-microsatellite sequences. Surprisingly, the affinity for Δ22 binding to GGAA-microsatellites significantly decreased, and ultimately became unmeasureable, when the size of the GGAA-microsatellite was increased to the “sweet-spot” length. In contrast, a fully-functional EWS/FLI mutant (Mut9) that retains approximately half of the EWS portion of the fusion showed low affinity for smaller GGAA-microsatellites, but instead significantly increased its affinity at “sweet-spot” microsatellite lengths. Single-gene ChIP and genome-wide ChIP-seq and RNA-seq studies extended these findings to the in vivo setting. Taken together, these data demonstrate the absolute requirement of GGAA-microsatellites as EWS/FLI activating response elements in vivo and reveal an unsuspected novel role for the EWS portion of the EWS/FLI fusion in binding to optimal-length GGAA-microsatellites.
Project description:We show that EWS-FLI1, an aberrant transcription factor responsible for the pathogenesis of Ewing sarcoma, reprograms gene regulatory circuits by directly inducing or directly repressing enhancers. At GGAA repeats, which lack regulatory potential in other cell types and are not evolutionarily conserved, EWS- FLI1 multimers potently induce chromatin opening, recruit p300 and WDR5, and create de novo enhancers. GGAA repeat enhancers can loop to physically interact with target promoters, as demonstrated by chromosome conformation capture assays. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors and abrogating p300 recruitment. ChIP-seq for of 4 histone modifications (H3K27ac, H3K4me1, H3K4me3 and H3K27me3), FLI1, p300, WDR5, ELF1 and GABPA in primary Ewing sarcomas, Ewing sarcoma cell lines (A673 and SKMNC cells), and mesenchymal stem cells (MSC). EWS-FLI1 was knocked down in Ewing sarcoma cell lines with lentiviral shRNAs (shFLI1 and shGFP control). EWS-FLI1 was expressed in MSCs with lentiviral expression vectors (pLIV EWSFLI1 or pLIV empty vector control). * Raw data not provided for the MSC and Primary Ewing sarcoma samples. *
Project description:Ewing sarcoma is an aggressive pediatric small round cell tumor that predominantly occurs in bone. Approximately 85% of Ewing sarcomas harbor the EWS/FLI fusion protein, which arises from a chromosomal translocation, t(11:22)(q24:q12). EWS/FLI interacts with numerous lineage-essential transcription factors to maintain mesenchymal progenitors in an undifferentiated state. We previously showed that EWS/FLI binds the osteogenic transcription factor RUNX2 and prevents osteoblast differentiation. In this study, we investigated the role of another Runt-domain protein, RUNX3, in Ewing sarcoma. RUNX3 participates in mesenchymal-derived bone formation and is a context dependent tumor suppressor and oncogene. RUNX3 was detected in all Ewing sarcoma cells examined, whereas RUNX2 was detected in only 73% of specimens. Like RUNX2, RUNX3 binds to EWS/FLI via its Runt domain. EWS/FLI prevented RUNX3 from activating the transcription of a RUNX-responsive reporter, p6OSE2. Stable suppression of RUNX3 expression in the Ewing sarcoma cell line A673 delayed colony growth in anchorage independent soft agar assays and reversed expression of EWS/FLI-responsive genes. These results demonstrate an important role for RUNX3 in Ewing sarcoma. RNA-seq to compare transcriptiome of control A673 ewing sarcoma cells stably expression a non-target or RUNX3 shRNA