Role of H3K36 methylation in regulating transcription coupled-nucleotide excision repair
Ontology highlight
ABSTRACT: We characterized the role of H3K36 methylation in regulating repair of UV damage from the transcribed strand (TS) of yeast genes by the transcription coupled nucleotide excision repair (TC-NER) pathway. TC-NER is triggered when RNA polymerase stalls at UV damage, such as a UV-induced cyclobutane pyrimidine dimer (CPD). During transcription, the histone methyltransferase Set2 methylates histone H3K36, but it is not known if H3K36 methylation regulates TC-NER. Here, we report genome-wide repair maps of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast cells containing mutants in histone H3K36 (or set2).
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE194101 | GEO | 2022/02/21
REPOSITORIES: GEO
ACCESS DATA