Human prostate cancer cells (VCaP and AIVCaP): siAR alone (single siRNA) vs. siAR plus OPRK1 (combo-siRNA)
Ontology highlight
ABSTRACT: Through comparative genomics using PDX models of androgen-dependent (AD) and castration-resistant (CR) tumors, we identify opioid receptor kappa 1 (OPRK1) as being associated with castration-resistance. Loss of OPRK1 function delays castration-resistance and inhibits castration-resistant growth of prostate cancer cells in culture and in vivo, suggesting OPRK1 as a therapeutic target. To gain insight with regard to biological function of OPRK1 under androgen-depleted condition, we set up two distinct comparisons using VCaP and AIVCaP cells. AIVCaP is an androgen-independent subline of VCaP which we established. VCaP or AIVCaP were treated with siRNA for AR plus siRNA for OPRK1 (combo-siRNA) or siRNA for AR alone (single siRNA) (n = 4 each), and then expression profile gained from microarray analysis of the respective cell line treated with combo-siRNA was compared with that of cells treated with single siRNA.
Project description:We investigated the composition of chromatin protein network around endogenous androgen receptor (AR) in VCaP castration resistant prostate cancer cells using recently developed chromatin-directed proteomic approach called ChIP-SICAP . The androgen-induced AR chromatin protein network contained expected TFs, e.g. HOXB13, chromatin remodeling proteins, e.g. SMARCA4, and several novel candidates not previously associated with AR, e.g. prostate cancer biomarker SIM2. Based on these findings, the role of SMARCA4 and SIM2 was further characterized at AR chromatin domains . Silencing of SIM2 altered chromatin accessibility at a similar number of AR-binding sites as SMARCA4, an established ATPase subunit of the BAF chromatin remodeling complex, often aberrantly expressed in prostate cancer. Despite the wide co-occurrence on chromatin of SMARCA4 and AR, depletion of SMARCA4 influenced chromatin accessibility and expression of a restricted set of AR target genes, in particular those involved in cell morphogenetic changes in epithelial-mesenchymal transition. Silencing of SIM2, in turn, affected the expression of a much larger group of androgen-regulated genes, e.g. those involved in cellular responses to external stimuli and steroid hormone stimulus. The silencing also reduced proliferation of VCaP cells and tumor size in chick embryo chorioallantoic membrane assay, further suggesting the importance of SIM2 in the regulation prostate cancer cells.
Project description:Continued androgen receptor (AR) signaling is an established mechanism underlying castration-resistant prostate cancer (CRPC), and suppression of AR signaling remains a therapeutic goal of CRPC therapy. Constitutively active androgen receptor splicing variants (AR-Vs) lack the AR ligand-binding domain (AR-LBD), the intended target of androgen deprivation therapies (ADT) including new CRPC therapies such as abiraterone and MDV3100. While the canonical full-length AR (AR-FL) and AR-Vs are both increased in CRPC, their expression regulation, associated transcriptional programs, functional relationships, and respective roles in mediating responses to endocrine therapies have not been dissected. In this study, we show that suppression of canonical AR-FL signaling by targeting AR-LBD leads to increased AR-V expression in two cell line models of CRPC. Importantly, treatment-induced AR-Vs activate a distinct expression signature enriched for cell cycle genes without requiring the presence of AR-FL. Conversely, activation of AR-FL signaling suppresses the AR-V signature but activates expression programs mainly associated with macromolecular synthesis, metabolism, and differentiation. In prostate cancer cells and CRPC xenografts treated with MDV3100 and abiraterone, increased expression of two constitutively active AR-Vs, AR-V7 and ARV567ES, but not AR-FL, parallels increased expression of the AR-driven cell cycle gene UBE2C. In addition, protein expression of AR-V7, but not AR-FL, is positively correlated with UBE2C in clinical CRPC specimens. The cumulative in vitro and in vivo evidence support an adaptive shift toward AR-V-mediated signaling in at least a subset of CRPC tumors as the AR-LBD is rendered inactive, suggesting an important mechanism contributing to drug resistance to CRPC therapies. LNCaP cells lacking AR-V were transfected with AR-V7 with or without androgen stimulation of AR-FL (4 conditions); LNCaP95 cells expressing AR-Vs were treated with control siRNA or siRNA trageting AR-LBD or AR-DBD, with or without androgen stimulation of AR-FL (6 conditions); VCaP cells expressing AR-Vs in the presence of androgen were treated with control siRNA, siRNA trageting AR-LBD, DMSO or MDV3100 to inhibit AR-FL (4 conditions). Total 14 arrays with no replicates.
Project description:Androgen receptor (AR) is reactivated in castration resistant prostate cancer (CRPC) through mechanisms including marked increases in AR gene expression. We identify an enhancer in the AR second intron contributing to increased AR expression at low androgen levels in CRPC. Moreover, at increased androgen levels the AR binds this site and represses AR gene expression through recruitment of lysine specific demethylase 1 (LSD1) and H3K4me1,2 demethylation. AR similarly represses expression of multiple genes mediating androgen synthesis, DNA synthesis and proliferation, while stimulating genes mediating lipid and protein biosynthesis. Androgen levels in CRPC appear adequate to stimulate AR activity on enhancer elements, but not on suppressor elements, resulting in increased expression of AR and AR repressed genes that contribute to cellular proliferation. Custom Agilent 44K whole human genome expression oligonucleotide microarrays were used to profile pre-castrated androgen dependent, 4d-post-castrated, and relapsed castration resistant VCaP xenograft tumors in 3 mice. Total RNA was isolated and amplified prior to hybridization against a common reference pool of prostate tumor cell lines.
Project description:Molecular mechanisms underlying resistance to androgen deprivation therapy (ADT) and, in particular, to antiandrogen Enzalutamide, in treating castration-resistant prostate cancer (CRPC), remain incompletely understood. Through screening >120 CRPC patient samples, we observed 3 expression patterns of androgen receptor (AR) protein: primarily nuclear (nuc-AR), mixed nuclear/cytoplasmic expression (nuc/cyto-AR), and low/no expression (AR-/lo). Xenograft CRPC modeling in 4 models (i.e., LNCaP, VCaP, LAPC4, and LAPC9) recapitulated the 3 AR expression patterns in castration-resistant tumors developed from parental androgen-dependent tumors. Strikingly, although the 3 CRPC models that retained AR expression (LNCaP, VCaP, and LAPC4) responded, to different levels and in different kinetics, to Enzalutamide, the AR-/lo LAPC9 CRPC was completely refractory to Enzalutamide. By combining whole-genome RNA-Seq and biochemical analyses together with experimental combinatorial therapy in the LNCaP and LAPC9 models, we identified BCL-2 as a critical therapeutic target in both AR+/hi and AR-/lo, Enzalutamide-resistant CRPC models.
Project description:Resistance to androgen deprivation therapies and increased androgen receptor (AR) activity are major drivers of castration-resistant prostate cancer (CRPC). Prior work has focused on targeting AR directly; however, the identification and targeting of co-activators of AR signaling remains an underexplored area. Here we demonstrate that the MLL (mixed-lineage leukemia) complex, a well-known contributor in MLL-fusion-positive leukemia, acts as a co-activator of AR signaling. AR interacts with the MLL complex via its subunit, menin. Small molecule inhibition of the menin-MLL interaction blocks AR signaling and inhibits tumor growth in vivo. Furthermore, we find that menin is up-regulated in CRPC and high expression correlates with poor overall survival. Our study identifies the MLL complex as a co-activator of AR that can be targeted in advanced prostate cancer. ASH2L / Menin / MLL1 were knocked down using shRNA /siRNA in two prostate cancer cell lines, VCaP and LNCaP.
Project description:The androgen receptor (AR) is a ligand-inducible transcription factor that mediates androgen action in target tissues. Upon ligand binding, the AR binds to thousands of genomic loci and activates a cell-type specific gene program. Prostate cancer growth and progression depend on androgen-induced AR signalling. Treatment of advanced prostate cancer through medical or surgical castration leads to initial response and durable remission, but resistance inevitably develops. In castration-resistant prostate cancer (CRPC), AR activity remains critical for tumor growth despite androgen deprivation. While previous studies have focused on ligand-dependent AR signalling, in this study we explore AR function under the androgen-deprived conditions characteristic of CRPC. Our data demonstrate that the AR persistently occupies a distinct set of genomic loci after androgen deprivation in CRPC. These androgen-independent AR occupied regions have constitutively open chromatin structures that lack the canonical androgen response element and are independent of FoxA1, a transcription factor involved in ligand-dependent AR targeting. Many AR binding events occur at proximal promoters, which can act as enhancers to augment transcriptional activities of other promoters through DNA looping. We further show that androgen-independent AR binding directs a distinct gene expression program in CRPC, which is necessary for the growth of CRPC after androgen withdrawal. LNCaP, C4-2B, or 22RV1 cells were cultured in hormone-free media for 3 days and then treated with ethanol vehicle or DHT (10nM) for 4h or 16h prior to ChIP-seq or RNA-seq assays. For siRNA transfection, cells were transfected with AR siRNA or control siRNA for 3 days prior to RNA-seq assays.
Project description:The majority of breast cancer subtypes express androgen receptor (AR) in addition to estrogen receptor α (ERα). Depending on the breast cancer subtype androgen signaling has either stimulatory or inhibitory roles in breast cancer cell growth. We have mapped AR cistrome in ERα negative human molecular apocrine breast cancer MDA-MB453 cells and analyzed it in relation to the androgen-regulated transcriptome in the same cells. We have also examined the effect of silencing of the coregulator SUMO ligase PIAS1 on the androgen-regulated transcriptome and AR cistrome in MDA-MB453 cells. Our results show that the MDA-MB453 cells share with VCaP prostate cancer cells a core AR cistrome and target gene signature linked to cancer cell growth and that PIAS1 acts as an AR target gene-selective coregulator in MDA-MB453 cells. MDA-MB453 cells were transfected with control siRNA (siNON) or PIAS1 siRNA (siPIAS1) for 72 h and treated 16 h with 10 nM R1881 or vehicle (ethanol). Total RNA was isolated and biological triplicate samples were analyzed by microarray.
Project description:Purpose: Resistance to androgen deprivation therapies is a major driver of mortality in advanced prostate cancer. Therefore, there is a need to develop new pre-clinical models that allow the investigation of resistance mechanisms and the assessment of drugs for the treatment of castration resistant prostate cancer. Methods: We generated two novel cell line models (LAPC4-CR and VCaP-CR) which were derived by passaging LAPC4 and VCaP cells in vivo and in vitro under castrate conditions. We performed detailed transcriptomic (RNA-seq) to delineate expression differences between castration-sensitive and castration-resistant cell lines. LAPC4-CR and VCaP-CR cell lines maintained AR expression, but exhibited distinct expression changes on the mRNA and protein level. Integrated analyses including data from LNCaP and the previously described castration resistant LNCaP-abl cells revealed an expression signature of castration resistance. Results: Integrated analyses including data from LNCaP and the previously described castration resistant LNCaP-abl cells revealed an expression signature of castration resistance.