ABSTRACT: The use of a systems biology approach to analyze common and specific mechanisms of liver toxicity induced by munitions compounds TNT, 2,6-DNT, 2,4-DNT, 4A-DNT, and 2A-DNT The munitions compound 2,4,6-trinitrotoluene (TNT), its environmental degradation products 2-amino-4,6-dinitrotoluene (2A-DNT) and 4-amino-2,6-dinitrotoulene (4A-DNT), and two other munitions, 2,4-dinitrotoluene (2,4-DNT) and 2,4-dinitrotoluene (2,6-DNT) contaminate contaminate land, water and retired ammunitions plants. The release of these compounds to the environment is due to military activities and a series of manufacturing processes. Although toxicity has been characterized for these compounds, little is known of their mechanism of action. Here we describe to use an integrative systems biology approach including toxicology, pathology, transcriptomics, metabolomics, gene function classification, pathway analysis and gene network modeling to try to understand the mechanisms of toxicity of these compounds.