A reference single-cell regulomic and transcriptomic map of cynomolgus monkeys [RNA-seq]
Ontology highlight
ABSTRACT: Non-human primates (NHP) are attractive laboratory animal models that accurately reflect both developmental and pathological features of humans. Here we present a compendium of cell types from the cynomolgus monkey Macaca fascicularis (denoted as ‘Monkey Atlas’) using both single-cell chromatin accessibility (scATAC-seq) and RNA sequencing (scRNA-seq) data at the organism-wide level. The integrated cell map enables in-depth dissection and comparison of molecular dynamics, cell-type composition and cellular heterogeneity across multiple tissues and organs. Using single-cell transcriptomic data, we inferred pseudotime cell trajectories and cell-cell communications to uncover key molecular signatures underlying their cellular processes. Furthermore, we identified various cell-specific cis-regulatory elements and constructed organ-specific gene regulatory networks at the single-cell level. Finally, we performed a comparative analysis of single-cell landscapes among mouse, cynomolgus monkey and human, and we showed that cynomolgus monkey has significantly higher degree of cell-type similarity to human than mouse. Taken together, our study provides a valuable resource for NHP cell biology.
Project description:Non-human primates (NHP) are attractive laboratory animal models that accurately reflect both developmental and pathological features of humans. Here we present a compendium of cell types from the cynomolgus monkey Macaca fascicularis (denoted as ‘Monkey Atlas’) using both single-cell chromatin accessibility (scATAC-seq) and RNA sequencing (scRNA-seq) data at the organism-wide level. The integrated cell map enables in-depth dissection and comparison of molecular dynamics, cell-type composition and cellular heterogeneity across multiple tissues and organs. Using single-cell transcriptomic data, we inferred pseudotime cell trajectories and cell-cell communications to uncover key molecular signatures underlying their cellular processes. Furthermore, we identified various cell-specific cis-regulatory elements and constructed organ-specific gene regulatory networks at the single-cell level. Finally, we performed a comparative analysis of single-cell landscapes among mouse, cynomolgus monkey and human, and we showed that cynomolgus monkey has significantly higher degree of cell-type similarity to human than mouse. Taken together, our study provides a valuable resource for NHP cell biology.
Project description:EXPERIMENT: The animal experiments were performed at Shin Nippon Biomedical Laboratories (SNBL), Ltd. (Kagoshima, Japan) in compliance with the Guideline for Animal Experimentation (1987), and in accordance with the Law Concerning the Protection and Control of Animals (1973) and the Standards Relating to the Care and Management of Experimental Animals (1980). This study was approved by the Institutional Animal Care and Use Committee of SNBL and performed in accordance with the ethics criteria contained in the bylaws of the SNBL committee. Each female monkey was paired with a male of proven fertility for one day between day 11 and day 15 of the menstrual cycle. Pregnant females, aged 5-8 years and weighing 2.84-3.76 kg on day 22 of gestation, were allocated randomly to two groups, each with three monkeys, and housed individually. The monkeys were orally dosed with (±)-thalidomide (Lot no. SDH7273/SDJ3347, Wako Pure Chemical Industries, Ltd., Osaka, Japan) at 0 or 20 mg/kg by oral intubation on day 26 of gestation, which was during the critical period for thalidomide-induced teratogenesis [Delahunt and Lassen, 1964; Hendrickx, 1973]. Dosage was adjusted to the body weight on day 22 of gestation and the drug was packed in a gelatin capsule. Control monkeys received the capsule only. ANIMAL MODEL: Macaca fascicularis INTERVAL: NON. PLATFORM: Proprietary Affymetrix NHP GeneChip® Array for Cynomolgus genome derived from Biogen Idec Keywords = Developmental Keywords = Monkeys Keywords = Thalidomide TFetal malformations and early embryonic gene expression response in cynomolgus monkeys maternally exposed to thalidomidechannel oligonucleotide (Affymetrix) platform.
Project description:Cynomolgus monkeys are well-established translational models for biomedical research and drug testing. Cynomolgus monkeys are outbred species and exhibit substantial levels of genetic variation which can affect the outcome and interpretation of biomedical studies. Copy number variations (CNVs) are a significant source of genetic diversity and a comprehensive understanding of the genomic impact of CNVs on phenotypic traits is limited. A custom 4.2 million probes comparative genomic hybridization (CGH) array (Design-ID: 120405_Cynomolgus5_CGH_UX1) has been designed on the basis of the Cynomolgus monkey genome (Ebeling et al. (2011) Genome Research; PMID: 21862625) to assess genome-wide copy number variation among Cynomolgus monkeys. Using Cynomolgus monkey specific NimbleGen CGH Microarrays we profiled the genomes of 21 Cynomolgus monkeys. Germline DNA from 21 Cynomolgus monkeys with different origin was tested against a Cynomolgus monkey reference. Cynomolus monkey samples were derived from breeding centers located in the Philippines (3 females and 3 males), in Vietnam (2 males and 2 females), in China for animals from Mainland Southeast Asia (3 females), or in Mauritius (4 females and 4 males). Furthermore genome-wide expression profiles were analyzed in 5 vitally important tissue samples (heart, kidney, liver, lung, spleen) from the same animals using a custom Cynomolgus monkey specific NimbleGen gene expression microarray (design ID: 120419_Cynomolgus_v5_TH_exp_HX12) to associate CNV genotypes with expression changes of proximal genes using a cis expression quantitative trait loci (cis-eQTL) mapping approach. Expression data have been deposited at the NCBI Gene Expression Omnibus (GEO) under accession numbers GSE76560. The array CGH results analyzed in this study are further described in Gschwind A.R. et al. (2016) "Diversity and regulatory impact of copy number variation in the primate Macaca fascicularis". under submission
Project description:In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.
Project description:In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.
Project description:In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.
Project description:In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.
Project description:In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.
Project description:We performed gene expression profiling of total RNA from brain samples derived from BSE-infected versus non-infected cynomolgus macaques (Macaca fascicularis).