Targeted NGS on artificial microRNAs expressed by a pool of heterogeneous Sindbis viruses
Ontology highlight
ABSTRACT: Purpose: Next-generation sequencing (NGS) on targeted locus in Sindbis genome to determine frequency changes of artificial microRNAs expressed by viruses after passaging in cancer and normal cells Methods: RNA was harvested in Trizol 488 (Thermo Fisher). RNA was extracted using the manufacturer’s protocol and quantified by nanodrop. Sequencing was done by SeqMatic on a MiSeq v3 platform generating 75bp reads. Adapters were trimmed using Trimmomatic and adapter-free reads represent artificial microRNAs encoded by Sindbis virus in a sample. Results: We have identified changes in artificial microRNA frequency after passaging virus pool in cancer and normal cells and have identified microRNAs increasing viral fitness in cancer cells. Conclusions: Our study represents artificial microRNAs which target pathways that can aid oncolytic viral replication in cancer cells.
Project description:Microarray analysis comparing cells that are resistant to Sindbis virus-induced cell death (clones 9, 43) versus cells that are sensitive to Sindbis virus-induced cell death (WT293) Keywords = Sindbis alphavirus functinal phenotype Keywords: repeat sample
Project description:A time course of infection of the alphavirus Sindbis virus (SINV) was used to investigate the presence of viral specific vsRNA and the changes in miRNAs profiles in human embryonic kidney 293 cells (HEK293) by high throughput DNA sequencing. Deep sequencing of small RNAs early in SINV infection (4 and 6 hpi) showed low abundance (0.8%) of viral specific RNAs (vsRNAs) , with a random uniform distribution not typical of Dicer products, suggesting they arise from non-specific degradation. Sequencing showed little variation of cellular microRNAs (miRNAs) at 4 and 6 hpi compared to uninfected cells. Twelve miRNAs exhibiting some minor differential expression by sequencing, showed insignificant modulation by Northern blot analysis. RNA was isolated from mock infected and SINV inoculated HEK 293 cells at 4hpi and 6hpi cDNA libraries were generated for the small RNA (sRNA) content of the cells and sequenced using Illumina GA II, which yielded between 29.1M and 30.5M reads per sample
Project description:Microarray analysis comparing cells that are resistant to Sindbis virus-induced cell death (clones 9, 43) versus cells that are sensitive to Sindbis virus-induced cell death (WT293)
Project description:A time course of infection of the alphavirus Sindbis virus (SINV) was used to investigate the presence of viral specific vsRNA and the changes in miRNAs profiles in human embryonic kidney 293 cells (HEK293) by high throughput DNA sequencing. Deep sequencing of small RNAs early in SINV infection (4 and 6 hpi) showed low abundance (0.8%) of viral specific RNAs (vsRNAs) , with a random uniform distribution not typical of Dicer products, suggesting they arise from non-specific degradation. Sequencing showed little variation of cellular microRNAs (miRNAs) at 4 and 6 hpi compared to uninfected cells. Twelve miRNAs exhibiting some minor differential expression by sequencing, showed insignificant modulation by Northern blot analysis.
Project description:Viral vectors are attractive tools to express genes in neurons. Transduction of neurons with a recombinant, replication-deficient Sindbis viral vector is a method of choice for studying the effects of short-term protein overexpression on neuronal function. However, to which extent Sindbis by itself may affect neurons is not fully understood. We assessed effects of neuronal transduction with a Sindbis viral vector on the transcriptome and proteome in organotypic hippocampal slice cultures, and analyzed the electrophysiological properties of individual CA1 neurons, at 24h and 72h after viral vector injection. Whereas Sindbis caused substantial gene expression alterations, changes at the protein level were less pronounced. Alterations in transcriptome and proteome were predominantly limited to proteins involved in mediating anti-viral innate immune responses. Sindbis transduction did not affect the electrophysiological properties of individual neurons: the membrane potential, excitability and synaptic currents were similar between transduced and nontransduced CA1 neurons up to 72h after Sindbis injection. We conclude that Sindbis viral vectors are suitable for studying short-term effects of a protein of interest on electrophysiological properties of neurons, but not for studies on the regulation of gene expression.