Integrative multi-omics landscape of fluoxetine action across 27 brain regions (single cell profiling for 2 regions)
Ontology highlight
ABSTRACT: We constructed a comprehensive multi-omics map of the molecular effects of fluoxetine (an SSRI antidepressant) in 27 rat brain regions. We profiled gene expression (bulk RNA-seq, 210 datasets) and chromatin state (bulk chromatin immunoprecipitation sequencing (ChIP-seq) for the histone marker H3K27ac, 100 datasets) in a broad, unbiased panel of 27 brain regions across the entire rodent brain, in naive and fluoxetine-treated animals. We complemented this approach with single-cell RNA-seq (scRNA-seq) analysis of two brain regions (20 datasets). Remarkably, in the single-cell RNA-seq profiling we observed profound changes in the transcripts of hippocampal dorDG and venDG (~500 DEGs in specific cell types). Using diverse integrative data analysis techniques we characterized the complex and multifaceted effects of fluoxetine on region-specific and cell-type-specific gene regulatory networks and pathways. We leveraged this atlas to identify fluoxetine-modulated genes and gene-regulatory loci, predict enriched motifs that suggest potential upstream regulators, and validate global mechanisms of fluoxetine action.
ORGANISM(S): Rattus norvegicus
PROVIDER: GSE197622 | GEO | 2022/09/04
REPOSITORIES: GEO
ACCESS DATA