Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy [snRNA-Seq]
Ontology highlight
ABSTRACT: Activation of microglia is a prominent pathological feature in tauopathies, including Alzheimer’s disease. How microglia activation contributes to tau toxicity remains largely unknown. Here we show that nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, activated by tau, drives microglial-mediated tau propagation and toxicity. Constitutive activation of microglial NF-κB exacerbated, while inactivation diminished, tau seeding and spreading in young PS19 mice. Inhibition of NF-B activation enhanced the retention while reduced the release of internalized pathogenic tau fibrils from primary microglia and rescued microglial autophagy deficits. Remarkably, inhibition of microglial NF-κB in aged PS19 mice rescued tau-mediated learning and memory deficits, restored overall transcriptomic changes while increasing neuronal tau inclusions. Single cell RNA-seq revealed that tau-associated disease states in microglia were diminished by NF-B inactivation and further transformed by constitutive NF-B activation. Our study establishes a central role for microglial NF-B signaling in mediating tau spreading and toxicity in tauopathy.
ORGANISM(S): Mus musculus
PROVIDER: GSE198014 | GEO | 2022/03/10
REPOSITORIES: GEO
ACCESS DATA