MUC1 triggers lineage plasticity of Her2 positive mammary tumor
Ontology highlight
ABSTRACT: The aberrant overexpression of mucin 1 (MUC1) and human epidermal growth factor receptor 2 (HER2) are often observed in breast cancer. However, the role of concomitant of MUC1/HERR2 in the development of breast cancer has not been fully illustrated. Following analysis public microarray datasets that revealed a correlation of double positive of MUC1 and HER2 to a worse clinical outcome, we generated a mouse model overexpressing both Her2 and MUC1 cytoplasmic domain (MUC1-CD) to investigate their interaction in mammary carcinogenesis. Coexpression of Her2 and MUC1-CD confers growth advantage and promotes the development of spontaneous mammary tumors. Genomic analysis uncovers that enforced expression of MUC1-CD and Her2 induces mammary tumor lineage plasticity which is supported by gene reprogramming and mammary stem cell enrichment. With gain- and loss-of function strategies, we show that coexpression of Her2 and MUC1-CD was associated with down-regulation of TCA cycle genes in tumors. Importantly, the reduction of TCA cycle genes induced by MUC1-CD is is significantly connected to the poor prognosis in HER2+ breast cancer patients. In addition, MUC1 augments Her2 signaling pathway by inducing Her2/Egfr dimerization. These findings collectively demonstrate the vital role of MUC1-CD/Her2 collaboration in shaping mammary tumor landscape and highlight the prognostic and therapeutic implication of MUC1 in patients with Her2+ breast cancer.
ORGANISM(S): Mus musculus
PROVIDER: GSE198239 | GEO | 2022/03/10
REPOSITORIES: GEO
ACCESS DATA