ABSTRACT: CD47 is a transmembrane glycoprotein that is ubiquitously expressed in different organs and tissues (Barclay and Van den Berg 2014; Liu, et al. 2017). In the human immune system, CD47 interacts with some integrins, two counter-receptor signal regulator protein (SIRP) family members, and the secreted thrombospondin-1 (TSP1) (Barclay and Van den Berg 2014; Gao, et al. 2016; Kaur, et al. 2013; Oldenborg, et al. 2000). CD47 has two established roles in the immune system. The CD47-SIRPα interaction was identified as a critical innate immune checkpoint, which delivers an antiphagocytic signal to macrophages and inhibits neutrophil cytotoxicity (Martínez- Sanz, et al. 2021). Its interaction with inhibitory SIRPα is a physiological anti-phagocytic “don’t eat me” signal on circulating red blood cells that is co-opted by cancer cells (Matlung, et al. 2017). Many malignant cells overexpress CD47 (Betancur, et al. 2017; Chao, et al. 2011; Jaiswal, et al. 2009; Majeti, et al. 2009; Oronsky, et al. 2020; Petrova, et al. 2017). CD47/SIRPα-targeted therapeutics have been developed to overcome this immune checkpoint for cancer treatment (Kaur, et al. 2020; Matlung, et al. 2017). Secondly, engagement of CD47 on T cells by TSP1 regulates their differentiation and survival (Grimbert, et al. 2006; Lamy, et al. 2007) and inhibits T cell receptor signaling and antigen presentation by dendritic cells (DCs) (Kaur, et al. 2014; Li, et al. 2002; Liu, et al. 2015; Miller, et al. 2013; Soto-Pantoja, et al. 2014; Weng, et al. 2014). TSP1/CD47 signaling has similar inhibitory functions to limit NK cell activation (Kim, et al. 2008; Nath, et al. 2018; Nath, et al. 2019; Schwartz, et al. 2019) and IL1β production by macrophages (Stein, et al. 2016). CD47 is therefore a checkpoint that regulates both innate and adaptive immunity. The recent understanding of CD47 antagonism associated with increased antigen presentation by DCs (Liu, et al. 2016) and natural killer cell cytotoxicity (Nath, et al. 2019) contributes to the heightened interest in CD47 as a therapeutic target (Kaur, et al. 2020).