Transcriptomics

Dataset Information

0

Connecting ligand-induced retinoid X receptor structural dynamics to rexinoid agonist potency


ABSTRACT: Retinoid X receptors (RXR) are nuclear transcription factors that partner with other nuclear receptors to regulate numerous physiological processes. Although RXR represents a valid therapeutic target, only a few RXR-specific ligands (rexinoids) have been identified, in part due to the lack of clarity on how rexinoids selectively modulate RXR response. Previously, we showed that rexinoid UAB30 potentiates all-trans-retinoic acid (ATRA) signaling in human keratinocytes by stimulating ATRA biosynthesis. Here, we examined the mechanism of action of next-generation rexinoids UAB110 and UAB111 that are more potent in vitro than UAB30 and the FDA-approved Targretin. Both UAB110 and UAB111 enhanced ATRA signaling in human organotypic epithelium at a 50-fold lower concentration than UAB30. This was consistent with the 2- to 5- fold greater increase in ATRA in skin rafts treated with UAB110/111 versus UAB30. Furthermore, at 0.2 µM, UAB110/111 increased the expression of ATRA genes up to 16-fold stronger than Targretin. The less toxic and more potent UAB110 also induced more changes in differential gene expression than Targretin. The hydrogen deuterium exchange mass spectrometry analysis showed that both ligands reduced the dynamics of the ligand-binding pocket but also induced unique dynamic responses that were indicative of higher affinity binding relative to UAB30, especially for Helix 3. UAB110 binding also showed increased dynamics towards the dimer interface through the Helix 8 and Helix 9 regions. These data suggest that UAB110 and UAB111 are potent activators of RAR: RXR signaling pathways but accomplish activation through different molecular responses to ligand binding.

ORGANISM(S): Homo sapiens

PROVIDER: GSE199381 | GEO | 2023/01/11

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2024-04-02 | GSE244387 | GEO
2024-07-03 | GSE270465 | GEO
2009-12-17 | E-GEOD-18886 | biostudies-arrayexpress
2024-09-02 | BIOMD0000000629 | BioModels
2009-12-17 | GSE18886 | GEO
2018-06-19 | GSE115946 | GEO
| 2380440 | ecrin-mdr-crc
2019-12-18 | PXD008761 | Pride
2018-10-16 | PXD010224 | Pride
2007-11-06 | E-GEOD-3952 | biostudies-arrayexpress