Mechanisms of Biofilm Formation in Two Escherichia coli O157:H7 Lineages
Ontology highlight
ABSTRACT: Two lineages of enterohemorrhagic (EHEC) Escherichia coli O157:H7 (EDL933, Stx1+ and Stx2+) and 86-24 (Stx2+) were investigated in regards to biofilm formation on an abiotic surface. Strikingly, EDL933 strain formed a robust biofilm while 86-24 strain formed no biofilm on either a polystyrene plate or a polyethylene tube. To identify the genetic mechanisms of different biofilm formation in two EHEC strains, DNA microarrays were first performed and phenotypic assays were followed. In the comparison of the EDL933 strain versus 86-24 strain, genes (csgBAC and csgDEFG) involved in curli biosynthesis were significantly induced while genes (trpLEDCB and mtr) involved in indole signaling were repressed. Additionally, a dozen of phage genes were differentially present between two strains. Curli assays using a Congo red plate and scanning electron microscopy corroborate the microarray data as the EDL 933 strain produces a large amount of curli, while 86-24 forms much less curli. Also, the indole production in the EDL933 was 2-times lower than that of 86-24. It was known that curli formation positively regulates and indole negatively regulates biofilm formation of EHEC. Hence, it appears that less curli formation and high indole production in the 86-24 strain are majorly responsible for no biofilm formation.
ORGANISM(S): Escherichia coli
PROVIDER: GSE19953 | GEO | 2011/01/19
SECONDARY ACCESSION(S): PRJNA122593
REPOSITORIES: GEO
ACCESS DATA