BCG therapy downregulates HLA-I on malignant cells to subvert antitumor immune responses in bladder cancer [NanoString_IMM]
Ontology highlight
ABSTRACT: Patients with high-risk non-muscle-invasive bladder cancer (NMIBC) frequently relapse after standard intravesical BCG therapy and may have a dismal outcome. Resistance mechanisms to such immunotherapy remain misunderstood. Here, using cancer cell lines, freshly resected human bladder tumors and cohorts of bladder cancer patients pre- and post-BCG therapy, we demonstrate two distinct patterns of immune subversion upon BCG relapse. In the first pattern, intracellular BCG infection of cancer cells induced a post-transcriptional downregulation of HLA-I membrane expression via an inhibition of the autophagy flux. Patients with HLA-I deficient cancer cells post-BCG therapy displayed a myeloid immunosuppressive tumor microenvironment with epithelial-to-mesenchymal transition (EMT) characteristics and dismal outcomes. Conversely, patients with HLA-I proficient cancer cells post-BCG therapy presented with CD8+ T cell tumor infiltrates, upregulation of inflammatory cytokines and inhibitory immune checkpoint molecules. Those patients had a very favorable outcome. We surmise that HLA-I expression in bladder cancers at relapse post-BCG does not result from immunoediting but rather from an immune subversion process directly induced by BCG on cancer cells, which predicts dismal prognosis. Cancer cells HLA-I scoring by immunohistochemistry (IHC) staining can be easily implemented by pathologists in routine practice to stratify future urothelial cancer patient treatment strategies.
ORGANISM(S): Homo sapiens
PROVIDER: GSE199616 | GEO | 2022/05/05
REPOSITORIES: GEO
ACCESS DATA