Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata
Ontology highlight
ABSTRACT: The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations. To test the hypothesis that larval transcription profiles reflect population specific responses to thermal stress, symbiont-free gametes of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico and raised under normal and elevated temperatures. These populations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among thousands of genes were simultaneously characterized using microarrays, allowing investigation of gene expression patterns among wild populations under stressful environmental conditions. Results show site-specific signatures of gene expression in larvae of a reef-building coral from different parts of its range (despite low genetic divergence), and reveal both local and general components of stress response during later stages of larval development. These results provide evidence of site-specific variation in the face of gene flow, which may represent functional genetic variation in different subpopulations, and support the idea that coral host genomes may indeed house the adaptive potential needed to deal with changing environmental conditions.
ORGANISM(S): Orbicella faveolata
PROVIDER: GSE19998 | GEO | 2010/06/23
SECONDARY ACCESSION(S): PRJNA120165
REPOSITORIES: GEO
ACCESS DATA