Custom Nanostring nCounter Pig (Sus scrofa) Cognitive Development Panel
Ontology highlight
ABSTRACT: The objective of this study was to determine whether different milk treatments affected the genes related to cognitive function in the piglet's brain
Project description:Although advances in long-read sequencing technology and genome assembly techniques have facilitated the study of genomes, little is known about the genomes of unique Chinese indigenous breeds, including the Huai pig. Huai pig is an ancient domestic pig breed and is well-documented for its redder meat color and high forage tolerance compared to European domestic pigs. In the present study, we sequenced and assembled the Huai pig genome using PacBio, Hi-C, and Illumina sequencing technologies. The final highly contiguous chromosome-level Huai pig genome spans 2.53 Gb with a scaffold N50 of 138.92 Mb. The Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness score for the assembled genome was 95.33%. Remarkably, 23,389 protein-coding genes were annotated in the Huai-pig genome, along with 45.87% repetitive sequences. Overall, this study provided new foundational resources for future genetic research on Chinese domestic pigs.
Project description:The discovery of new protein-coding DNA variants related to carcass traits is very important for the Italian pig industry, which requires heavy pigs with higher thickness of subcutaneous fat for Protected Designation of Origin (PDO) productions. Exome capture techniques offer the opportunity to focus on the regions of DNA potentially related to the gene and protein expression. In this research a human commercial target enrichment kit was used to evaluate its performances for pig exome capture and for the identification of DNA variants suitable for comparative analysis. Two pools of 30 pigs each, crosses of Italian Duroc X Large White (DU) and Commercial hybrid X Large White (HY), were used and NGS libraries were prepared with the SureSelectXT Target Enrichment System for Illumina Paired-End Sequencing Library (Agilent). A total of 140.2 M and 162.5 M of raw reads were generated for DU and HY, respectively. Average coverage of all the exonic regions for Sus scrofa (ENSEMBL Sus_scrofa.Sscrofa10.2.73.gtf) was 89.33X for DU and 97.56X for HY; and 35% of aligned bases uniquely mapped to off-target regions. Comparison of sequencing data with the Sscrofa10.2 reference genome, after applying hard filtering criteria, revealed a total of 232,530 single nucleotide variants (SNVs) of which 20.6% mapped in exonic regions and 49.5% within intronic regions. The comparison of allele frequencies of 213 randomly selected SNVs from exome sequencing and the same SNVs analyzed with a Sequenom MassARRAY® system confirms that this "human-on-pig" approach offers new potentiality for the identification of DNA variants in protein-coding genes.
Project description:The pig is a well-studied model animal of biomedical and agricultural importance. Genes of this species, Sus scrofa, are known from experiments and predictions, and collected at the NCBI reference sequence database section. Gene reconstruction from transcribed gene evidence of RNA-seq now can accurately and completely reproduce the biological gene sets of animals and plants. Such a gene set for the pig is reported here, including human orthologs missing from current NCBI and Ensembl reference pig gene sets, additional alternate transcripts, and other improvements. Methodology for accurate and complete gene set reconstruction from RNA is used: the automated SRA2Genes pipeline of EvidentialGene project.
Project description:ObjectiveIncreasing food safety demands in the animal product market have created a need for a system to trace the food distribution process, from the manufacturer to the retailer, and genetic traceability is an effective method to trace the origin of animal products. In this study, we successfully achieved the farm tracing of 6,018 multi-breed pigs, using single nucleotide polymorphism (SNP) markers strictly selected through least absolute shrinkage and selection operator (LASSO) feature selection.MethodsWe performed farm tracing of domesticated pig (Sus scrofa) from SNP markers and selected the most relevant features for accurate prediction. Considering multi-breed composition of our data, we performed feature selection using LASSO penalization on 4,002 SNPs that are shared between breeds, which also includes 179 SNPs with small between-breed difference. The 100 highest-scored features were extracted from iterative simulations and then evaluated using machine-leaning based classifiers.ResultsWe selected 1,341 SNPs from over 45,000 SNPs through iterative LASSO feature selection, to minimize between-breed differences. We subsequently selected 100 highest-scored SNPs from iterative scoring, and observed high statistical measures in classification of breeding farms by cross-validation only using these SNPs.ConclusionThe study represents a successful application of LASSO feature selection on multi-breed pig SNP data to trace the farm information, which provides a valuable method and possibility for further researches on genetic traceability.
Project description:The gene expression analysis of the RNA samples were analyzed with NanoString Non Human Primate immunology panel comprised of 754 immune related gene
Project description:mRNA expression in human bronchial epithelial cells unstimulated was compared with mRNA expression of cells stimulated with poly (I:C) (viral mimic) and poly (I:C) in combination with imiquimod (TLR7 agonist; Treatment). The aim was to assess the effect of imiquimod treatment on poly (I:C)-dependent changes in bronchial epithelium from asthmatics.
Project description:BackgroundSeveral studies have independently evaluated the occurrence of hepatitis E virus (HEV) and enteroparasites in swine, but no surveys have been conducted to jointly assess the prevalence and genetic diversity of enteroparasites in pigs and wild boars, their sympatric transmission between hosts, and their potential interaction with HEV.MethodsWe prospectively collected serum and faecal samples from black Iberian domestic pigs and wild boars from southern Spain between 2015‒2016. We evaluated for HEV in serum and faeces, and for the presence of enteroparasites (Giardia duodenalis, Cryptosporidium spp., Blastocystis sp., Neobalantidium coli and Strongyloides spp.) in the same faecal samples. The prevalence of each intestinal parasite species was calculated.ResultsA total of 328 animals (56.7% black Iberian pigs and 43.3% wild boars) were included in the study. The overall global prevalence of HEV in serum was 16.8%. The overall global prevalence of each enteroparasite species was 19.5% for G. duodenalis, 8.2% for Cryptosporidium spp., 41.8% for Blastocystis sp., 31.4% for N. coli, and 8.8% for Strongyloides spp. HEV-infected animals showed a significantly lower prevalence of G. duodenalis (3.2 vs 20%; P = 0.002) and Blastocystis sp. (38.7 vs 80%; P < 0.001) than those uninfected by HEV. Animals carrying G. duodenalis and Blastocystis sp. infections showed a significantly lower rate of HEV infection than those not harbouring these enteroparasites (P < 0.001).ConclusionsOur study found a high prevalence of enteroparasites in black Iberian pigs and wild boars in southern Spain, suggesting a sympatric co-transmission of some of the species investigated. It is suggested that extracellular G. duodenalis and Blastocystis sp. might have a protective effect on HEV acquisition in swine.
Project description:BACKGROUND:The domestic pig (Sus scrofa) is both an important livestock species and a model for biomedical research. Exome sequencing has accelerated identification of protein-coding variants underlying phenotypic traits in human and mouse. We aimed to develop and validate a similar resource for the pig. RESULTS:We developed probe sets to capture pig exonic sequences based upon the current Ensembl pig gene annotation supplemented with mapped expressed sequence tags (ESTs) and demonstrated proof-of-principle capture and sequencing of the pig exome in 96 pigs, encompassing 24 capture experiments. For most of the samples at least 10x sequence coverage was achieved for more than 90% of the target bases. Bioinformatic analysis of the data revealed over 236,000 high confidence predicted SNPs and over 28,000 predicted indels. CONCLUSIONS:We have achieved coverage statistics similar to those seen with commercially available human and mouse exome kits. Exome capture in pigs provides a tool to identify coding region variation associated with production traits, including loss of function mutations which may explain embryonic and neonatal losses, and to improve genomic assemblies in the vicinity of protein coding genes in the pig.