Dot1L recruits OGT target chromatin to regulate histones O-GlcNAcylation
Ontology highlight
ABSTRACT: OGT (O-GlcNAc transferase) is the distinctive enzyme responsible for catalyzing O-GlcNAc to the serine or threonine residues of thousands of cytoplasm and nuclear proteins that are involved in DNA damage, RNA splicing, and transcription preinitiation and initiation complex assembly. However, the molecular mechanism by OGT regulating gene transcription remains elusive. Using proximity labeling based mass spectrometry, we searched for functional partners of OGT and found that Dot1L, the conserved and unique histone methyltransferase mediated histone H3 lys79 methylation required for gene transcription, DNA damage repair, cell proliferation, and embryo development, interacts with OGT. Although this specific interaction does not regulate the enzymatic activity of Dot1L, it facilitates OGT-dependent histones O-GlcNAcylation. Moreover, OGT associates with Dot1L at transcription start sites, and depleting Dot1L decreased OGT associated with chromatin globally. Notably, downregulation of Dot1L reduces the levels of histone H2B S112 O-GlcNAcylation and histone H2B K120 ubiquitination in vivo, which are associated with gene transcription regulation. Taken together, these results reveal a Dot1L-dependent O-GlcNAcylation of chromatin.
ORGANISM(S): Homo sapiens
PROVIDER: GSE200059 | GEO | 2022/04/06
REPOSITORIES: GEO
ACCESS DATA