SnoRNA sequencing of sEV isolated from plasma of astronauts
Ontology highlight
ABSTRACT: This study aimed to determine whether the spaceflight-induced snoRNA changes in plasma extracellular vesicles (EV) and astronauts' peripheral blood mononuclear cells (PBMCs) can be utilized as potential biomarkers. Using unbiased small RNA sequencing, we evaluated the EV snoRNA changes in peripheral blood (PB) plasma of astronauts (n=5/group) who underwent median 12-day long Shuttle missions between 1998-2001. Using stringent cutoff (> log 2-fold change, FDR < 0.05), we detected 21 down-regulated snoRNAs and 9 upregulated in PB-EVs at three days after return (R+3) compared to ten days before launch (L-10). Our findings unveiled that spaceflight induced changes in EV and PBMCs snoRNA expression, thus suggesting snoRNAs may serve as novel biomarkers for monitoring astronauts' health.
Project description:We sought to determine whether the spaceflight environment can induce alterations in small extracellular vesicles (sEV) smallRNA content and their utility as biomarkers. Using small RNA sequencing (sRNAseq), we evaluated the impact of the spaceflight environment on sEV miRNA content in peripheral blood (PB) plasma of 14 astronauts, who flew STS missions between 1998-2001. Samples were collected at three-time points:10 days before the launch (L-10), the day of return (R-0), and three days post-landing (R+3).
Project description:Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to infectious pathogens. Here we report the first microarray evaluation of any astronaut tissue sample, specifically whole blood, before and after spaceflight using an array comprising 234 well-characterized stress response genes. Differentially regulated genes included those important for DNA repair, oxidative stress, and protein folding/degradation. Microarrays comprising 234 well characterized stress-related genes were used to profile transcriptomic changes in six astronauts before and after short-duration spaceflight. Blood samples were collected for analysis from each eastronaut 10 days prior and 2-3 hours after return from spaceflight. Data submitted for platform GPL140 contain genes that have been pre-filtered by the analytical software to remove values of low certainty, resulting in missing values for some samples. Unfortunately, these original data are no longer available due to physical damage at Tulane University during hurricane Katrina, but the processed values were retained in redundant locations and these are submitted for upload to GEO.
Project description:Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to infectious pathogens. Here we report the first microarray evaluation of any astronaut tissue sample, specifically whole blood, before and after spaceflight using an array comprising 234 well-characterized stress response genes. Differentially regulated genes included those important for DNA repair, oxidative stress, and protein folding/degradation.
Project description:There are unique stressors in the spaceflight environment. Exposure to such stressors is associated with adverse effects on astronauts' health, including increased cancer and cardiovascular disease risks. Small extracellular vesicles (sEVs, i.e., exosomes) play a vital role in intercellular communication and regulate various biological processes contributing to their role in disease pathogenesis. To assess whether spaceflight alters sEVs transcriptome profile, sEVs were isolated from the blood plasma of 3 astronauts at two different time points: 10 days before launch (L-10) and 3 days after return (R+3) from the Shuttle mission. Human adult ventricular cardiomyocyte cells (AC16) were treated with L-10 and R+3 astronauts-derived exosomes for 24 hours. Total RNA was isolated and analyzed for gene expression profiling using Affymetrix microarrays. Enrichment analysis was performed using Enrichr. Transcription factor enrichment analysis using the ENCODE/ChEA Consensus TF database identified gene sets related to the polycomb repressive complex 2 (PRC2) and Vitamin D receptor (VDR) in AC16 cells treated with R+3 compared to cells treated with L-10 astronauts-derived exosomes. Further analysis of the histone modifications using datasets from the Roadmap Epigenomics Project confirmed enrichment in gene sets related to the H3K27me3 repressive mark. Interestingly, analysis of previously published H3K27me3–chromatin immunoprecipitation sequencing (ChIP-Seq) ENCODE datasets showed enrichment of H3K27me3 in the VDR promoter. Collectively, our results suggest that astronaut-derived sEVs may epigenetically repress the expression of the VDR in human adult cardiomyocytes c by promoting the activation of the PRC2 complex and H3K27me3 levels.
Project description:Spaceflight imposes the risk of skeletal muscle atrophy for astronauts. The understanding of muscle atrophy because of spaceflight is limited, but continued efforts are essential for developing countermeasures of this effect. A distinct difference between spaceflight-induced muscle atrophy and other forms of atrophy is the additional effect of cosmic rays in outer space. To study spaceflight-induced muscle atrophy, we performed two ground-based models of microgravity in a low dose radiation environment and studied transcriptional changes in rat soleus muscle using microarray technology.
Project description:In recent times, long-term stay has become a common occurrence in the International Space Station (ISS). However, adaptation to the space environment can sometimes pose physiological problems to the astronauts after their return. Therefore, it is important to develop healthcare technologies for astronauts. In this study, hair, an easy-to-obtain sample, was identified as the candidate. In order to investigate the genetic changes in human hair during space flight, the hair follicles of 10 astronauts were analyzed by DNA microarray and real time q-PCR analyses. Space environment induced gene expression of hair follicles of astronaut was measured 6 differnent times included 2 in flight on orbit. Ten independent experiments were performed on differing astronauts. and the sampling day was differed for each astronaut because of their schedules.