Project description:We performed single-cell/nuclei RNA-sequencing (sc/snRNA-seq) of 22 treatment-naïve melanoma brain metastases (MBM; 5 samples using scRNA-seq and 17 snRNA-seq) from 21 patients and 10 treatment-naïve peripheral (extracranial) metastases (ECM; all snRNA-seq) from 10 patients. We performed matched spatial sequencing using SlideSeq2 (n=16) on 11 snRNA-seq samples.
Project description:We performed single-cell/nuclei RNA-sequencing (sc/snRNA-seq) of 22 treatment-naïve melanoma brain metastases (MBM; 5 samples using scRNA-seq and 17 snRNA-seq) from 21 patients and 10 treatment-naïve extracranial (peripheral) metastases (MPM; all snRNA-seq) from 10 patients . In total, we recovered 145,555 cell transcriptomes in 32 samples including 73,369 cells from MBM and 72,186 from MPM.
Project description:We performed single nuclei RNA-sequencing (snRNA-seq) with matched T cell receptor sequencing (TCR-seq) of 12 treatment-naïve non-small cell lung cancer (NSCLC) primary tumors (PTs) and 31 treatment-naïve NSCLC brain metastases (BMs) .
Project description:We performed single nuclei RNA-sequencing (snRNA-seq) with matched T cell receptor sequencing (TCR-seq), and pool matched low pass whole genome sequencing (WGS) of 12 treatment-naïve non-small cell lung cancer (NSCLC) primary tumors (PTs) and 31 treatment-naïve NSCLC brain metastases (BMs) . In total, we recovered 277,206 cell transcriptomes in 43 samples.
Project description:We performed single nuclei RNA-sequencing (snRNA-seq) with matched T cell receptor sequencing (TCR-seq), and pool matched low pass whole genome sequencing (WGS) of 12 treatment-naïve non-small cell lung cancer (NSCLC) primary tumors (PTs) and 31 treatment-naïve NSCLC brain metastases (BMs) . In total, we recovered 277,206 cell transcriptomes in 43 samples.
Project description:We performed single nuclei RNA-sequencing (snRNA-seq) with matched T cell receptor sequencing (TCR-seq), pool matched low pass whole genome sequencing (WGS) and single-cell spatial transcriptomics of 12 treatment-naïve non-small cell lung cancer (NSCLC) primary tumors (PTs) and 31 treatment-naïve NSCLC brain metastases (BMs) . In total, we recovered 277,206 cell transcriptomes in 43 samples. We performed matched spatial sequencing using SlideSeq2 on 14 snRNA-seq samples.
Project description:Melanomas are heterogeneous and adopt multiple transcriptional states that can confer an invasive phenotype and resistance to therapy. Little is known about the epigenetic drivers of these cell states, limiting our ability to regulate melanoma heterogeneity and tumor progression. Here we identify stress-induced HDAC8 activity as the driver of a transcriptional state that increased the formation of melanoma brain metastases (MBM). Exposure of melanocytes and melanoma cells to multiple different stresses led to HDAC8 activation, a switch to a gene expression signature associated with a neural crest-stem cell like state (NCSC) and the adoption of an amoeboid, invasive phenotype. This cell state enhanced the survival of melanoma cells under shear stress conditions and increased the formation of metastases in the brain. ATAC-Seq and ChIP-Seq analysis showed HDAC8 to alter chromatin structure by increasing H3K27ac and accessibility at c-Jun binding sites without changing global histone acetylation. The increased accessibility of Jun binding sites was paralleled by decreased H3K27ac and accessibility at MITF binding sites and loss of melanoma-lineage gene expression. Mass spectrometry-based acetylomics demonstrated that HDAC8 deacetylated the histone acetyltransferase (HAT) EP300 leading to its enzymatic inactivation. This, in turn, led to an increased binding of EP300 to Jun-transcriptional sites and decreased binding to MITF-transcriptional sites. Increased expression of EP300 decreased invasion and increased the sensitivity of melanoma cells to multiple stresses while inhibition of EP300 function increased invasion, resistance to stress and the development of MBM. We identified HDAC8 as a novel mediator of transcriptional co-factor inactivation and chromatin accessibility that increases MBM development.