GPER/β-alanine Positive Interaction in the Dorsal Root Ganglion Uncovers Potential Mechanisms: Mediating Continuous Neuronal Sensitization and Neuroinflammation Responses in Neuropathic Pain
Ontology highlight
ABSTRACT: Background: The pathogenesis of neuropathic pain and the reasons for the prolonged unhealing are still unknown. Increasing evidence suggests that oestrogen sex differences play a role in pain sensitivity, but few studies focused on the role of oestrogen receptor which maybe an important molecular component contributing to peripheral pain transduction. We aimed to investigate the impact of ooestrogen receptors in nociceptive neuronal response in the dorsal root ganglion (DRG) and spinal dorsal horn using a spared nerve injury (SNI) rat model of chronic pain. Methods: We used a class of oestrogen receptors antagonists and agonists intrathecal (i.t.) administrated to male rats with SNI or normal rats to identify the main receptor. Moreover, we applied genes identified through genomic metabolic analysis to determine the key metabolism point and elucidate potential mechanisms mediating continuous neuronal sensitisation and neuroinflammation responses in neuropathic pain. The excitability of DRG neurons was detected using the patch clamp technique. Primary culture was used to extract microglia and DRG neurons, and siRNA transfection was used to silence receptor protein expression. Immunofluorescence, Western blotting, qPCR and behavioral testing were used to assess the expressions, cellular distributions, and actions of main receptor and its related signaling molecules. Results: Increasing the expression and function of G protein-coupled oestrogen receptor (GPER), but not oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ), in the DRG neuron and microglia, but not the dorsal spinal cord, contributed to SNI-induced neuronal sensitisation. Inhibiting GPER expression in the DRG alleviated SNI-induced pain behaviours and neuroinflammation by downregulating iNOS, IL-1β and IL-6 expression as well as restoring GABAα2 expression simultaneously. Additionally, the positive interaction between GPER and β-alanine, β-alanine accumulation enhances pain sensation and promotes chronic pain development. Conclusion: GPER activation in the DRG causes a positive interaction of β-alanine with iNOS, IL-1β and IL-6 expression and represses GABAα2 involved in post-SNI neuropathic pain development. Blocking GPER and eliminating β-alanine in the DRG neuron and microglia may prevent neuropathic pain development.
Project description:Peripheral nerve injury alters the expression of hundreds of proteins in dorsal root ganglia (DRG). Targeting some of these proteins has led to successful treatments for acute pain, but not for sustained postoperative neuropathic pain. The latter may require targeting multiple proteins. Since a single microRNA (miR) can affect the expression of multiple proteins, here, we describe an approach to identify chronic neuropathic pain-relevant miRs. We used two variants of the spared nerve injury (SNI): Sural-SNI and Tibial-SNI and found distinct pain phenotypes between the two. Both models induced strong mechanical allodynia, but only Sural-SNI rats maintained strong mechanical and cold allodynia, as previously reported. In contrast, we found that Tibial-SNI rats recovered from mechanical allodynia and never developed cold allodynia. Since both models involve nerve injury, we increased the probability of identifying differentially regulated miRs that correlated with the quality and magnitude of neuropathic pain and decreased the probability of detecting miRs that are solely involved in neuronal regeneration. We found seven such miRs in L3-L5 DRG. The expression of these miRs increased in Tibial-SNI. These miRs displayed a lower level of expression in Sural-SNI, with four having levels lower than those in sham animals. Bioinformatics analysis of how these miRs could affect the expression of some ion channels supports the view that, following a peripheral nerve injury, the increase of the 7 miRs may contribute to the recovery from neuropathic pain while the decrease of four of them may contribute to the development of chronic neuropathic pain. The approach used resulted in the identification of a small number of potentially neuropathic pain relevant miRs. Additional studies are required to investigate whether manipulating the expression of the identified miRs in primary sensory neurons can prevent or ameliorate chronic neuropathic pain following peripheral nerve injuries. To identify the miRs that were differentially dysregulated between Tibial-SNI and Sural-SNI, we first performed 12 microarrays in a limited number of samples (in four individual DRGs per group: Sham, Tibial-SNI and Sural-SNI; two L3-DRG and two L4-DRG). Then, miRs identified as having differential expression were corroborated with real time qRT-PCR in RNA isolated from individual DRGs (L3, L4 and L5) derived from 4 rats per group (not presented here, but in the manuscript).
Project description:Peripheral nerve injury alters the expression of hundreds of proteins in dorsal root ganglia (DRG). Targeting some of these proteins has led to successful treatments for acute pain, but not for sustained postoperative neuropathic pain. The latter may require targeting multiple proteins. Since a single microRNA (miR) can affect the expression of multiple proteins, here, we describe an approach to identify chronic neuropathic pain-relevant miRs. We used two variants of the spared nerve injury (SNI): Sural-SNI and Tibial-SNI and found distinct pain phenotypes between the two. Both models induced strong mechanical allodynia, but only Sural-SNI rats maintained strong mechanical and cold allodynia, as previously reported. In contrast, we found that Tibial-SNI rats recovered from mechanical allodynia and never developed cold allodynia. Since both models involve nerve injury, we increased the probability of identifying differentially regulated miRs that correlated with the quality and magnitude of neuropathic pain and decreased the probability of detecting miRs that are solely involved in neuronal regeneration. We found seven such miRs in L3-L5 DRG. The expression of these miRs increased in Tibial-SNI. These miRs displayed a lower level of expression in Sural-SNI, with four having levels lower than those in sham animals. Bioinformatics analysis of how these miRs could affect the expression of some ion channels supports the view that, following a peripheral nerve injury, the increase of the 7 miRs may contribute to the recovery from neuropathic pain while the decrease of four of them may contribute to the development of chronic neuropathic pain. The approach used resulted in the identification of a small number of potentially neuropathic pain relevant miRs. Additional studies are required to investigate whether manipulating the expression of the identified miRs in primary sensory neurons can prevent or ameliorate chronic neuropathic pain following peripheral nerve injuries.
Project description:Peripheral nerve injury could lead to chronic neuropathic pain. Understanding transcriptional changes induced by nerve injury could provide fundamental insights into the complex pathogenesis of neuropathic pain. Gene expression profiles of dorsal root ganglia (DRG) under neuropathic pain condition have been studied. However, little is known about transcriptomic changes in individual DRG neurons after peripheral nerve injury. Here we performed single-cell RNA sequencing on dissociated mouse DRG cells after spared nerve injury (SNI). In addition to DRG neuron types also found under normal conditions, we identified three SNI-induced neuron clusters (SNIICs) characterized by the expression of Atf3/Gfra3/Gal (SNIIC1), Atf3/Mrgprd (SNIIC2) and Atf3/S100b/Gal (SNIIC3). These SNIICs were originated from Cldn9+/Gal+, Mrgprd+ and Trappc3l+ DRG neuron types. Interestingly, SNIIC2 was switched to SNIIC1 by increasing Gal and reducing Mrgprd expression 2 days after nerve injury. Inferring the gene regulatory networks underlying nerve injury, we revealed that activated transcription factor Atf3 and Egr1 in SNIICs could enhance Gal expression while activated Cpeb1 in SNIIC2 might suppress Mrgprd expression within 2 days after SNI. Furthermore, we screened the transcriptomic changes in the development of neuropathic pain to identify the potential analgesic targets. We revealed that the expression of cardiotrophin-like cytokine factor 1, which could activate the astrocytes in the dorsal horn of spinal cord, was increased in SNIIC1 neurons and contributed to SNI-induced mechanical allodynia. Therefore, our results provide a new framework to understand the changes in neuron types and the dynamics of molecular and cellular mechanisms underlying the development of neuropathic pain.
Project description:We produced single-cell transcriptomes from the mouse spinal cord using Drop-seq in animals modeling neuropathic pain and superficial injury (SI) controls. We used the spared nerve injury (SNI) model of neuropathic pain. ~10,000 cells from sham surgery controls and ~9,000 cells from SNI animals were sequenced. Unbiased cell clustering yielded 66 spinal cell subtypes sequenced at relatively low depth (~1200 transcripts/cell). Comparisons between SI and SNI cells were performed to investigate cell-specific differences during a neuropathic pain state.
Project description:Impaired branched-chain amino acid (BCAA) catabolism has recently been implicated in the development of mechanical pain, but the underlying molecular mechanisms are unclear. Here we report that defective BCAA catabolism in dorsal root ganglion (DRG) neurons sensitizes mice to mechanical pain by increasing lactate production and expression of the mechanotransduction channel Piezo2. In high-fat diet-fed obese mice, we observe downregulation of PP2Cm, a key regulator of the BCAA catabolic pathway, in DRG neurons. Mice with conditional knockout of PP2Cm in DRG neurons exhibit mechanical allodynia under normal or SNI-induced neuropathic injury conditions. Furthermore, the VAS scores in the plasma of patients with peripheral neuropathic pain are positively correlated with BCAA contents. Mechanistically, defective BCAA catabolism in DRG neurons promotes lactate production through glycolysis, which increases H3K18la modification and drives Piezo2 expression. Inhibition of lactate production or Piezo2 silencing attenuates the pain phenotype of knockout mice in response to mechanical stimuli. Therefore, our study demonstrates a causal role of defective BCAA catabolism in mechanical pain by enhancing metabolite-mediated epigenetic regulation.
Project description:Our understanding of how sex and age influence pathological pain at the molecular level is still limited. This is of high relevance for pediatric and adolescent patients, as they are known to be particularly vulnerable to long-term consequences of pathological pain. Here, we leveraged deep proteome profiling of mouse dorsal root ganglia (DRG) from the spared nerve injury (SNI)-model of neuropathic pain and investigated adolescent (4-week-old) and adult (12-week-old) male and female mice in parallel. Differential expression and multidimensional analysis enabled us to reveal sex- and age-dependent proteome regulation upon nerve injury. To enhance the translational significance of our findings, we determined shared proteome signatures among tested sex and age groups. By cross-referencing our results with human DRG data evolutionary conserved molecular patterns were identified. These not only bridge the gap between animal models and human biology, but also offer valuable insights for drug discovery efforts benefiting adolescents, women, and men equally. Overall, we provide an innovative resource that allows researchers to gain a more nuanced understanding of nerve injury-induced changes in mouse DRG. Our findings have significant implications for translational research, potentially accelerating discoveries in peripheral nervous system function and pain.
Project description:This program addresses the gene signature associated with DRG in the Chung rat model for neuropathic pain. The Chung neuropathic pain profiling data was analyzed by identifying genes that were up- and down-regulated at selected p value and fold change in DRG of the Sprague Dawley rats following spinal nerve ligation compared to the sham-operated controls.
Project description:Tricyclic antidepressants (TCAs), such as desipramine (DMI), are effective at managing neuropathic pain symptoms but often take several weeks to become effective and also lead to considerable side effects. Tianeptine (TIAN) is an atypical antidepressant that activates the mu-opioid receptor but does not produce analgesic tolerance or withdrawal in mice, nor euphoria in humans, at clinically-relevant doses. Here, we evaluate the efficacy of TIAN at persistently alleviating mechanical allodynia in the spared nerve injury (SNI) model of neuropathic pain, even well after drug clearance. After finding an accelerated onset of antiallodynic action compared to DMI, we used genetically modified mice to gain insight into RGS protein-associated pathways that modulate the efficacy of TIAN relative to DMI in models of neuropathic pain. Because we observed similar behavioral responses to both TIAN and DMI treatment in RGS4, RGSz1, and RGS9 knockout mice, we performed RNA sequencing on the NAc of TIAN- and DMI-treated mice after prolonged SNI to further clarify potential mechanisms underlying TIANs faster therapeutic actions. Our bioinformatic analysis revealed distinct transcriptomic signatures between the two drugs, with TIAN more directly reversing SNI-induced differentially expressed genes, and further predicted several upstream regulators that may be implicated in onset of action. This new understanding of the molecular pathways underlying TIAN action may enable the development of novel and more efficacious pharmacological approaches for the management of neuropathic pain.
Project description:Expression profiling of L4 and L5 Dorsal Root Ganglion (DRG) in the spinal nerve ligation model of neuropathic pain. The goal of the study was to identify genes involved in neuropathic pain This series of samples comprises of contralateral and ipsilateral L4 and L5 DRG tissue collected 4 weeks after rats underwent a L5 spinal nerve ligation (SNL) or a sham operation with no L5 spinal nerve ligation. This defines 8 groups (i) contralateral L4 DRG from the sham cohort (n=5), (ii) ipsilateral L4 DRG from sham cohort (n=5), (iii) contralateral L4 DRG from SNL cohort (n=5), (iv) ipsilateral L4 DRG from the SNL chort (n=5), (v) contralateral L5 DRG from the sham cohort (n=5), (vi) ipsilateral L5 DRG from sham cohort (n=5), (vii) contralateral L5 DRG from SNL cohort (n=5), (viii) ipsilateral L5 DRG from the SNL cohort (n=5)
Project description:Neuropathic pain is a chronic debilitating condition with a high comorbidity with depression. Clinical reports and animal studies have suggested that both the medial prefrontal cortex (mPFC) and the anterior cingulate cortex (ACC) are critically implicated in regulating the affective symptoms of neuropathic pain. Neuropathic pain induces long-term structural, functional and biochemical changes in both regions, which are thought to be regulated by multiple waves of gene transcription. However, the similarity and differences in the transcriptomic profiles changed by neuropathic pain between these regions are largely unknown. Furthermore, women are more susceptible to pain and depression than men. The molecular mechanisms underlying this sexual dimorphism remain to be explored. Here, we performed RNA sequencing and analyzed the transcriptomic profiles of the mPFC and ACC of female and male mice at 2 weeks after spared nerve injury (SNI), an early time point when the mice began to show mild depressive symptoms. Our results show that the SNI-induced transcriptomic changes in female and male mice are largely distinct. Interestingly, the female mice exhibit more robust transcriptomic changes in the ACC than male, whereas the opposite pattern occurs in the mPFC. Cell type enrichment analyses reveal that the differentially expressed genes involve genes enriched in both neurons and various types of glia. We further performed Gene Set Enrichment Analysis (GSEA), which reveal significant de-enrichment of myelin sheath development in both female and male mPFC after SNI. In the female ACC, gene sets for synaptic organization and mitochondria function are enriched, and gene sets for extracellular matrix are de-enriched after SNI, while such signatures are absent in male ACC. Collectively, these findings reveal sexual dimorphism at the transcriptional level induced by neuropathic pain, and provide novel therapeutic targets for chronic pain and its associated affective disorders.