Dimethylmonothioarsenate (DMMTA) is highly toxic for plants and induce strong transcriptome changes.
Ontology highlight
ABSTRACT: Arsenic is one of the most relevant environmental pollutants and human health threats. Several arsenic species occur in soil pore waters. Recently it was discovered that these include inorganic and organic thioarsenates. Dimethylmonothioarsenate (DMMTA) belong to organic thioarsenates and in mammalian cells its toxicity was found to exceed even that of arsenite. We investigated DMMTA toxicity in Arabidopsis thaliana (Col-0) and we found strong transcriptome changes dominated by stress-responsive genes.
Project description:Talemi2014 - Arsenic toxicity and
detoxification mechanisms in yeast
The model implements arsenite (AsIII)
transport regulation, its distribution within main cellular AsIII
pools and detoxification. The intracellular As pools considered are
free AsIII (AsIIIin), protein-bound AsIII (AsIIIprot), glutathione
conjugated AsIII (AsGS3) and vacuolar sequestered AsIII (vAsGS3).
This model is described in the article:
Mathematical modelling of
arsenic transport, distribution and detoxification processes in
yeast.
Talemi SR, Jacobson T, Garla V,
Navarrete C, Wagner A, Tamás MJ, Schaber J.
Mol. Microbiol. 2014 Jun; 92(6):
1343-1356
Abstract:
Arsenic has a dual role as causative and curative agent of
human disease. Therefore, there is considerable interest in
elucidating arsenic toxicity and detoxification mechanisms. By
an ensemble modelling approach, we identified a best
parsimonious mathematical model which recapitulates and
predicts intracellular arsenic dynamics for different
conditions and mutants, thereby providing novel insights into
arsenic toxicity and detoxification mechanisms in yeast, which
could partly be confirmed experimentally by dedicated
experiments. Specifically, our analyses suggest that: (i)
arsenic is mainly protein-bound during short-term (acute)
exposure, whereas glutathione-conjugated arsenic dominates
during long-term (chronic) exposure, (ii) arsenic is not stably
retained, but can leave the vacuole via an export mechanism,
and (iii) Fps1 is controlled by Hog1-dependent and
Hog1-independent mechanisms during arsenite stress. Our results
challenge glutathione depletion as a key mechanism for arsenic
toxicity and instead suggest that (iv) increased glutathione
biosynthesis protects the proteome against the damaging effects
of arsenic and that (v) widespread protein inactivation
contributes to the toxicity of this metalloid. Our work in
yeast may prove useful to elucidate similar mechanisms in
higher eukaryotes and have implications for the use of arsenic
in medical therapy.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000547.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Arsenic contamination in food and ground water constitutes a public health concern to more than 100 million people worldwide. Individuals chronically exposed to arsenic through drinking and ingestion exhibit a higher risk in developing cancers and cardiovascular diseases. Nevertheless, the underlying mechanisms of arsenic toxicity are not fully understood. Arsenite is known to bind to and deactivate RING finger E3 ubiquitin ligases; thus, we reason that a systematic interrogation about how arsenite exposure modulates global protein ubiquitination may reveal novel molecular targets for arsenic toxicity. By employing liquid chromatography-tandem mass spectrometry, in combination with stable isotope labeling by amino acids in cell culture (SILAC) and immunoprecipitation of di-glycine-conjugated lysine-containing tryptic peptides, we assessed the alterations in protein ubiquitination in GM00637 human skin fibroblast cells upon arsenite exposure at the entire proteome level. We observed that arsenite exposure led to altered ubiquitination of many proteins, where the alterations in a large majority of ubiquitination events are negatively correlated with changes in expression of the corresponding proteins, suggesting their modulation by the ubiquitin-proteasomal pathway. Moreover, we observed that arsenite exposure confers diminished ubiquitination of a rate-limiting enzyme in cholesterol biosynthesis, HMGCR, at Lys248. In addition, we revealed that TRC8 is the major E3 ubiquitin ligase for HMGCR ubiquitination in HEK293T cells, and the arsenite-induced diminution of HMGCR ubiquitination is abrogated with depletion of TRC8. In summary, we systematically characterized arsenite-induced perturbations in ubiquitinated proteome in human cells, and found that the arsenite-elicited diminution of HMGCR ubiquitination involves TRC8.
Project description:ABSTRACT: Inorganic arsenic is a carcinogen and its ingestion in foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1 encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Further, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic containing food stuffs such as rice. Hybridizations from a set of Bulk Segregant analysis. We measured the elemental profile of 315 F2 plants from a cross between the high arsenic Arabidopsis thaliana accession Kr-0 and the the low arsenic accession Col-0, data available at www.ionomicshub.org <http://www.ionomicshub.org>. Leaves from the 59 highest and 61 lowest arsenic accumulating plants (calculated as a percentage of the Col-0 accumulation in the same growth tray) were pooled and the genomic DNA was extracted using Qiagen kits.
Project description:ABSTRACT: Inorganic arsenic is a carcinogen and its ingestion in foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1 encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Further, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic containing food stuffs such as rice.
Project description:Arsenic (As) exposure is a significant worldwide environmental health concern. Low dose, chronic arsenic exposure has been associated with higher risk of skin, lung, and bladder cancer, as well as cardiovascular disease and diabetes. While arsenic-induced biological changes play a role in disease pathology, little is known about the dynamic cellular changes due to arsenic exposure and withdrawal. In these studies, we seek to understand the molecular mechanisms behind the biological changes induced by chronic low doses of arsenic exposure. We used a comprehensive approach involving chromatin structural studies and mRNA microarray analyses to determine how chromatin structure and gene expression patterns change in response to chronic low dose arsenic exposure and its subsequent withdrawal. Our results show that cells exposed to low doses of sodium arsenite have distinct temporal and coordinated chromatin, gene expression and miRNA changes that are consistent with differentiation and activation of multiple biochemical pathways. Most of these temporal patterns in gene expression are reversed when arsenic was withdrawn. However, some of the gene expression patterns remained altered, plausibly as a result of an adaptive response by these cells. Additionally, these gene expression patterns correlated with changes in chromatin structure, further solidifying the role of chromatin structure in gene regulatory changes due to arsenite exposure. Lastly, we show that arsenite exposure influences gene regulation both at the transcription initiation as well as at the splicing level. Thus our results suggest that general patterns of alternative splicing, as well as expression of particular gene regulators, can be indicative of arsenite-induced cell transformation. A total of eight (8) samples with two biological replicates under four separate conditions: wild-type treated with deionized H2O for 36 days (NT); chronic low-dose arsenic exposure of 1 uM of sodium arsenite (iAs-T) for 36 days; chronic arsenic exposure of 1 uM of sodium arsenite for 26 days followed by removal of sodium arsenite for 10 days, measured at day 36 (iAs-Rev); and chronic arsenic exposure of 1 uM of sodium arsenite for 26 days, followed by removal of sodium arsenite exposure for 10 days, followed by 1 uM of chronic sodium arsenite exposure for 10 days (measured at day 46) (iAs-Rev-T).
Project description:Arsenic is ubiquitously present in nature and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative and kinetic transcriptome, proteome and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance and proteolytic activity. Importantly, enzymes involved in sulfate assimilation and glutathione biosynthesis were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pin-pointed transcription factors that mediate thecore of the transcriptional response to arsenite. Taken together, our data reveals that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert. Keywords: stress
Project description:Arsenic is ubiquitously present in nature and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative and kinetic transcriptome, proteome and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance and proteolytic activity. Importantly, enzymes involved in sulfate assimilation and glutathione biosynthesis were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pin-pointed transcription factors that mediate thecore of the transcriptional response to arsenite. Taken together, our data reveals that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert. Keywords: stress
Project description:Arsenic is ubiquitously present in nature and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative and kinetic transcriptome, proteome and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance and proteolytic activity. Importantly, enzymes involved in sulfate assimilation and glutathione biosynthesis were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pin-pointed transcription factors that mediate thecore of the transcriptional response to arsenite. Taken together, our data reveals that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert. Keywords: stress
Project description:Arsenic is ubiquitously present in nature and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative and kinetic transcriptome, proteome and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance and proteolytic activity. Importantly, enzymes involved in sulfate assimilation and glutathione biosynthesis were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pin-pointed transcription factors that mediate thecore of the transcriptional response to arsenite. Taken together, our data reveals that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert. Keywords: stress
Project description:Arsenic is ubiquitously present in nature and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative and kinetic transcriptome, proteome and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance and proteolytic activity. Importantly, enzymes involved in sulfate assimilation and glutathione biosynthesis were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pin-pointed transcription factors that mediate thecore of the transcriptional response to arsenite. Taken together, our data reveals that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert. Keywords: stress, time course