ABSTRACT: Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and from primary childhood and adult pancreas for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a previously unrecognized, transient CDX2-expressing β-cell-related population in fetal pancreas, arguing against a non-pancreatic origin as proposed. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β-cell maturation and identify sex hormones as drivers of childhood β-cell proliferation. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem cell-derived islets and a framework for manipulating cell identities and maturity.
Project description:Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and from primary childhood and adult pancreas for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a previously unrecognized, transient CDX2-expressing β-cell-related population in fetal pancreas, arguing against a non-pancreatic origin as proposed. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β-cell maturation and identify sex hormones as drivers of childhood β-cell proliferation. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem cell-derived islets and a framework for manipulating cell identities and maturity.
Project description:Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and from primary childhood and adult pancreas for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a previously unrecognized, transient CDX2-expressing β-cell-related population in fetal pancreas, arguing against a non-pancreatic origin as proposed. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β-cell maturation and identify sex hormones as drivers of childhood β-cell proliferation. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem cell-derived islets and a framework for manipulating cell identities and maturity.
Project description:Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and from primary childhood and adult pancreas for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a previously unrecognized, transient CDX2-expressing β-cell-related population in fetal pancreas, arguing against a non-pancreatic origin as proposed. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β-cell maturation and identify sex hormones as drivers of childhood β-cell proliferation. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem cell-derived islets and a framework for manipulating cell identities and maturity.
Project description:Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and from primary childhood and adult pancreas for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a previously unrecognized, transient CDX2-expressing β-cell-related population in fetal pancreas, arguing against a non-pancreatic origin as proposed. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β-cell maturation and identify sex hormones as drivers of childhood β-cell proliferation. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem cell-derived islets and a framework for manipulating cell identities and maturity.
Project description:Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and from primary childhood and adult pancreas for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a previously unrecognized, transient CDX2-expressing β-cell-related population in fetal pancreas, arguing against a non-pancreatic origin as proposed. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β-cell maturation and identify sex hormones as drivers of childhood β-cell proliferation. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem cell-derived islets and a framework for manipulating cell identities and maturity.
Project description:Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and from primary childhood and adult pancreas for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a previously unrecognized, transient CDX2-expressing β-cell-related population in fetal pancreas, arguing against a non-pancreatic origin as proposed. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β-cell maturation and identify sex hormones as drivers of childhood β-cell proliferation. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem cell-derived islets and a framework for manipulating cell identities and maturity.
Project description:Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and from primary childhood and adult pancreas for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a previously unrecognized, transient CDX2-expressing β-cell-related population in fetal pancreas, arguing against a non-pancreatic origin as proposed. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β-cell maturation and identify sex hormones as drivers of childhood β-cell proliferation. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem cell-derived islets and a framework for manipulating cell identities and maturity.
Project description:Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and from primary childhood and adult pancreas for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a previously unrecognized, transient CDX2-expressing β-cell-related population in fetal pancreas, arguing against a non-pancreatic origin as proposed. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β-cell maturation and identify sex hormones as drivers of childhood β-cell proliferation. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem cell-derived islets and a framework for manipulating cell identities and maturity.
Project description:It is known that the stresses encountered during islet isolation have deleterious effects on beta-cell physiology. The nature of these effects, however, is incompletely known, partly due to the heterogeneity of islet preparations. The objective was to assess the genome-wide effect of islet isolation and in-vitro culture on beta-cell transcriptome. Beta cells identified by their intrinsic autofluorescence, were captured from donor pancreas and isolated islets using Laser Capture Microdissection. Beta cells from donor pancreas serve as the control. Our results indicated induction of a strong inflammatory response induced by islet isolation which continues during in vitro culture manifested by upregulation of several cytokines, chemokines and their receptors. IL-8 was induced by 3.6-fold and 56-fold in fresh and 3-days cultured islets respectively. Concordantly, several pancreatic progenitor cell-specific transcription factors like were upregulated in cultured islets, suggesting progressive transformation of mature beta-cell phenotype toward an immature endocrine cell phenotype. There are three sample types in our experiment; 1) beta-cells captured from the frozen sections of donor pancreas n=8, 2) beta cells extracted from islets frozen immediately after isolation (d0 islets) n=8 and, 3) beta cells extracted from isolated islets frozen after culturing for 3 days (d3 islets) n=5. For the analysis, beta cells from pancreas were considered as the reference point.
Project description:Human pancreatic islets were isolated from pancreas of deceased donors by Ricordi's procedure and cultured in CMRL 1066 medium additioned with human albumin. EVs were isolated from conditioned medium derived from islet culture after isolation. Once isolated, RNA of islets and islet-derived EVs was extracted and analyzed for microRNA expression within 48 hours after isolation.