CXCL10 promotes vascular permeability upon TNF-induced release from pericytes
Ontology highlight
ABSTRACT: Tumor necrosis factor alpha induces vascular permeability, playing an important role in inflammation. Also, TNF-induced vascular leakage is involved in the increased extravasation of nanoparticle formulated chemotherapeutics improving drug delivery and subsequently tumor response, and we found a positive correlation between the presence of pericytes in the tumor-associated vasculature and TNF-induced leakage. RNA sequencing and pathway analysis of TNF-stimulated versus non-stimulated pericytes and endothelial cells show significant upregulation of several pathways involving interferon regulating pathways with a high expression of CXCL10, also known as Interferon gamma-inducible protein 10 (IP-10) in TNF-stimulated pericytes. In addition, CXCL10 protein production was significantly increased in conditioned medium from TNF-exposed pericytes compared to the other conditions. In our animal studies, we observed that tumor types with high pericyte covered vessels show enhanced permeability when exposed to TNF, which can be blocked with a neutralizing CXCL10 antibody. Vice versa, tumors with vessels low in pericyte number do not respond to TNF, i.e., do not express elevated permeability. Importantly, this lack of pericyte coverage can be compensated by co-administration of CXCL10. Our finding reveals a mechanism where TNF induces CXCL10 release from pericytes, being at the basis of increased permeability and thus vascular leakage.
ORGANISM(S): Homo sapiens
PROVIDER: GSE203505 | GEO | 2022/07/01
REPOSITORIES: GEO
ACCESS DATA