Iron availability enhances the cellular energetics of aerobic Escherichia coli cultures by activating anaerobic respiratory chains
Ontology highlight
ABSTRACT: Aerobic Escherichia coli growth at restricted iron concentrations (≤ 1.75 ± 0.04 mM) is characterized by lower biomass yield, higher acetate accumulation, and higher activation of the siderophore iron-acquisition systems. Although iron homeostasis in E. coli has been studied intensively, these studies focused only on understanding the regulation of the iron import systems and the iron-requiring enzymes. In this study, the effect of iron availability on the energy metabolism of E. coli was investigated. It was established that aerobic cultures growing at limiting iron conditions showed lower ATP yield per glucose, lower growth rate, and lower TCA cycle activity and respiration, and at the same time increased glucose consumption, acetate and pyruvate accumulation, practically mimicking microaerobic growth. However, at excess iron, independently of oxygen availability, the cultures showed high cellular energetics (5.8 ATP/mol of glucose) by using pathways requiring iron-rich complex proteins found in the TCA cycle and respiration chain. At conditions of iron excess, some iron requiring terminal reductases of the respiratory chain, that were supposed to be anaerobic, were used by the E. coli, when in aerobic conditions, to keep high respiration activity. This high respiration activity allowed E. coli to produce more biomass and more reactive oxygen species that were controlled by the higher activity of the antioxidant defenses (SOD, peroxidase, and catalase) and the iron-sulfur cluster repair systems.
Project description:In some of the earliest uses of genome-wide gene-expression microarrays and array-based Comparative Genomic Hybridization (aCGH), a set of diploid yeasts that had undergone experimental evolution under aerobic glucose limitation was used to explore how gene expression and genome structure had responded to this selection pressure. To more deeply understand how adaptation to one environment might constrain or enhance performance in another we have now identified the adaptive mutations in this set of clones using whole-genome sequencing, and have assessed whether the evolved clones had become generalists or specialists by assaying their fitness under three contrasting growth environments: aerobic and anaerobic glucose limitation and aerobic acetate limitation. Additionally, evolved clones and their common ancestor were assayed for gene expression, biomass estimates and residual substrate levels under the alternative growth conditions. Relative fitnesses were evaluated by competing each clone against a common reference strain in each environment. Unexpectedly, we found that the evolved clones also outperformed their ancestor under strictly fermentative and strictly oxidative growth conditions. We conclude that yeasts evolving under aerobic glucose limitation become generalists for carbon limitation, as the mutations selected for in one environment are advantageous in others. High-throughput sequencing of the evolved clones uncovered mutations in genes involved in glucose sensing, signaling, and transport that in part explain these physiological phenotypes, with different sets of mutations found in independently-evolved clones. Earlier gene expression data from aerobic glucose-limited cultures had revealed a shift from fermentation towards respiration in all evolved clones explaining increased fitness in that condition. However, because the evolved clones also show higher fitness under strictly anaerobic conditions and under conditions requiring strictly respirative growth, this switch cannot be the sole source of adaptive benefit. Furthermore, because independently evolved clones are genetically distinct we conclude that there are multiple mutational paths leading to the generalist phenotype. Strain Name: Parental strain (CP1AB) or evolved clones (E1 - E5) Media: aerobic / anaerobic 36 hybridizations
Project description:In some of the earliest uses of genome-wide gene-expression microarrays and array-based Comparative Genomic Hybridization (aCGH), a set of diploid yeasts that had undergone experimental evolution under aerobic glucose limitation was used to explore how gene expression and genome structure had responded to this selection pressure. To more deeply understand how adaptation to one environment might constrain or enhance performance in another we have now identified the adaptive mutations in this set of clones using whole-genome sequencing, and have assessed whether the evolved clones had become generalists or specialists by assaying their fitness under three contrasting growth environments: aerobic and anaerobic glucose limitation and aerobic acetate limitation. Additionally, evolved clones and their common ancestor were assayed for gene expression, biomass estimates and residual substrate levels under the alternative growth conditions. Relative fitnesses were evaluated by competing each clone against a common reference strain in each environment. Unexpectedly, we found that the evolved clones also outperformed their ancestor under strictly fermentative and strictly oxidative growth conditions. We conclude that yeasts evolving under aerobic glucose limitation become generalists for carbon limitation, as the mutations selected for in one environment are advantageous in others. High-throughput sequencing of the evolved clones uncovered mutations in genes involved in glucose sensing, signaling, and transport that in part explain these physiological phenotypes, with different sets of mutations found in independently-evolved clones. Earlier gene expression data from aerobic glucose-limited cultures had revealed a shift from fermentation towards respiration in all evolved clones explaining increased fitness in that condition. However, because the evolved clones also show higher fitness under strictly anaerobic conditions and under conditions requiring strictly respirative growth, this switch cannot be the sole source of adaptive benefit. Furthermore, because independently evolved clones are genetically distinct we conclude that there are multiple mutational paths leading to the generalist phenotype. Strain Name: Parental strain (CP1AB) or evolved clones (E1 - E5) Media: aerobic / anaerobic
Project description:Background: The biotechnology industry has extensively exploited Escherichia coli for producing recombinant proteins, biofuels etc. However, high growth rate aerobic E. coli cultivations are accompanied by acetate excretion i.e. overflow metabolism which is harmful as it inhibits growth, diverts valuable carbon from biomass formation and is detrimental for target product synthesis. Although overflow metabolism has been studied for decades, its regulation mechanisms still remain unclear. Results: In the current work, growth rate dependent acetate overflow metabolism of E. coli was continuously monitored using advanced continuous cultivation methods (A-stat and D-stat). The first step in acetate overflow switch (at μ = 0.27 ± 0.02 1/h) is the repression of acetyl-CoA synthethase (Acs) activity triggered by carbon catabolite repression resulting in decreased assimilation of acetate produced by phosphotransacetylase (Pta), and disruption of the PTA-ACS node. This was indicated by acetate synthesis pathways PTA-ACKA and POXB component expression down-regulation before the overflow switch at μ = 0.27 ± 0.02 1/h with concurrent 5-fold stronger repression of acetate-consuming Acs. This in turn suggests insufficient Acs activity for consuming all the acetate produced by Pta, leading to disruption of the acetate cycling process in PTA-ACS node where constant acetyl phosphate or acetate regeneration is essential for E. coli chemotaxis, proteolysis, pathogenesis etc. regulation. In addition, two-substrate A-stat and D-stat experiments showed that acetate consumption capability of E. coli decreased drastically, just as Acs expression, before the start of overflow metabolism. The second step in overflow switch is the sharp decline in cAMP production at μ = 0.45 1/h leading to total Acs inhibition and fast accumulation of acetate. Conclusion: This study is an example of how a systems biology approach allowed to propose a new regulation mechanism for overflow metabolism in E. coli shown by proteomic, transcriptomic and metabolomic levels coupled to two-phase acetate accumulation: acetate overflow metabolism in E. coli is triggered by Acs down-regulation resulting in decreased assimilation of acetic acid produced by Pta, and disruption of the PTA-ACS node.
Project description:Time course of exponentially growing yeast cells Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such roles in yeast batch cultures by quantifying O2 consumption, CO2 production, amino acids, mRNAs, proteins, posttranslational modifications, and stress sensitivity in the course of nine doublings at constant rate. During this course, the cells support a constant biomass-production rate with decreasing rates of respiration and ATP production but also decrease their stress resistance. As the respiration rate decreases, so do the levels of enzymes catalyzing rate-determining reactions of the tricarboxylic-acid cycle (providing NADH for respiration) and of mitochondrial folate-mediated NADPH production (required for oxidative defense). The findings demonstrate that exponential growth can represent not a single metabolic/physiological state but a continuum of changing states and that aerobic glycolysis can reduce the energy demands associated with respiratory metabolism and stress survival.
Project description:Background: The biotechnology industry has extensively exploited Escherichia coli for producing recombinant proteins, biofuels etc. However, high growth rate aerobic E. coli cultivations are accompanied by acetate excretion i.e. overflow metabolism which is harmful as it inhibits growth, diverts valuable carbon from biomass formation and is detrimental for target product synthesis. Although overflow metabolism has been studied for decades, its regulation mechanisms still remain unclear. Results: In the current work, growth rate dependent acetate overflow metabolism of E. coli was continuously monitored using advanced continuous cultivation methods (A-stat and D-stat). The first step in acetate overflow switch (at μ = 0.27 ± 0.02 1/h) is the repression of acetyl-CoA synthethase (Acs) activity triggered by carbon catabolite repression resulting in decreased assimilation of acetate produced by phosphotransacetylase (Pta), and disruption of the PTA-ACS node. This was indicated by acetate synthesis pathways PTA-ACKA and POXB component expression down-regulation before the overflow switch at μ = 0.27 ± 0.02 1/h with concurrent 5-fold stronger repression of acetate-consuming Acs. This in turn suggests insufficient Acs activity for consuming all the acetate produced by Pta, leading to disruption of the acetate cycling process in PTA-ACS node where constant acetyl phosphate or acetate regeneration is essential for E. coli chemotaxis, proteolysis, pathogenesis etc. regulation. In addition, two-substrate A-stat and D-stat experiments showed that acetate consumption capability of E. coli decreased drastically, just as Acs expression, before the start of overflow metabolism. The second step in overflow switch is the sharp decline in cAMP production at μ = 0.45 1/h leading to total Acs inhibition and fast accumulation of acetate. Accumulation of acetate was also coupled to excretion of products such as orotate and N-carbomoyl-L-aspartate making it a novel carbon spilling mechanism in E. coli. Conclusion: This study is an example of how a systems biology approach allowed to propose a new regulation mechanism for overflow metabolism in E. coli shown by proteomic, transcriptomic and metabolomic levels coupled to two-phase acetate accumulation: acetate overflow metabolism in E. coli is triggered by Acs down-regulation resulting in decreased assimilation of acetic acid produced by Pta, and disruption of the PTA-ACS node. Reference samples at specific growth rate (μ) 0.11 1/h were compared to the ones acquired at μ 0.21, 0.26, 0.31, 0.36, 0.40 and 0.48 1/h
Project description:Respiratory ATP-synthesis is at present the only known mechanism for ATP synthesis in Mtb. This makes Mtb particularly vulnerable to inhibition of respiratory ATP synthase inhibitors such as TMC207, a novel compound for treatment of tuberculosis. We now provide first evidence that Mtb possesses a pathway that is fermentative in nature that could compensate lack of respiratory ATP synthesis. We identified acetate as a fermentation product in Mtb. Production of acetate was mediated by phosphotransacetylase (Pta) and acetate kinase (AckA). In acetate fermenting Mtb cultures, ATP levels remained stable despite inhibition of respiratory ATP synthase. Deletion of the PtaAckA pathway in Mtb decreased ATP content and impaired survival. This study provides evidence that in Mtb substrate level phosphorylation can compensate lack of oxidative phosphorylation, and thus facilitates survival of Mtb in the absence of respiration. Acetate fermentation contributes to adaptation to respiration-limiting conditions, and plays an important role in the emerging field of fermentative metabolism of Mtb. We performed DNA microarray analysis to validate the reduction of oxygen concentration by comparing aerobic and hypoxic cultures. RNA was prepared from Mtb after two days of cultivation in aerobic and in hypoxic cultures. At each condition, Mtb were cultured in medium supplemented with glycerol and glucose. Labelled cDNA from three independent experiments was subjected to array analysis.
Project description:Lactococcus lactis is the main bacterium used for food fermentation and is a candidate for probiotic development. In addition to fermentation growth, supplementation with heme in aerobic conditions activates a cytochrome oxidase, which promotes respiration metabolism. In contrast to fermentation in which cells consume energy to produce mainly lactic acid, respiration metabolism dramatically changes energy metabolism, such that massive amounts of acetic acid and acetoin are produced at the expense of lactic acid. Our goal was to investigate the metabolic changes that correlate with significantly improved growth and survival during respiration growth. Using transcriptional time course analyses, mutational analyses, and promoter reporter fusions, we uncover two main pathways that can explain the robust growth and stability of respiration cultures: The acetate pathway contributes to biomass yield in respiration, without affecting medium pH. The acetoin pathway allows cells to cope with internal acidification, which directly affects cell density and survival in stationary phase. Our results suggest that manipulation of these pathways could lead to fine tuning respiration growth, with improved yield and stability.
Project description:The present study reports the gene expression data of Mycobacterium tuberculosis H37Rv and H37RvΔdosSΔdosT (DKO) grown on 0.2 % acetate/glucose under aerobic/hypoxic conditions. Acetate was reported to be present in granulomas of Mycobacterium tuberculosis infected guinea pigs which are also hypoxic. By exposing Mycobacterium tuberculosis H37Rv and H37RvΔdosSΔdosT to different combinations of granulomatous stresses (acetate/glucose and aerobic/hypoxic conditions) alongwith other experimental data, we were able to delineate a new signaling pathway that activates DevR (DosR) regulon through Acetyl phosphate. The presence of two pathways highlights the importance of targeting DevR and not DevS/DosT for intercepting DevRST signalling cascade.
Project description:To understand the gene response during the glucose to acetate diauxic transition, we grew E. coli in minimal media with acetate and a small amount of glucose. Cells were collected and RNA was purified at different time points during the growth transition, including pre-shift (growth on glucose), 5 minutes, 15 minutes, 60 minutes and 120 minutes after glucose run-out, and steady state growth on acetate (post-shift).
Project description:When the yeast Saccharomyces cerevisiae is subjected to increasing glycolytic fluxes under aerobic conditions, there is a threshold value of the glucose uptake rate at which the metabolism shifts from being purely respiratory to mixed respiratory and fermentative. This shift is characterized by ethanol production, a phenomenon known as the Crabtree effect due to its analogy with lactate overflow in cancer cells. It is well known that at high glycolytic fluxes there is glucose repression of respiratory pathways resulting in a decrease in the respiratory capacity. Despite many years of detailed studies on this subject, it is not known whether the onset of the Crabtree effect (or overflow metabolism) is due to a limited respiratory capacity or caused by glucose-mediated repression of respiration. We addressed this issue by increasing respiration in S. cerevisiae by introducing a heterologous alternative oxidase, and observed reduced aerobic ethanol formation. In contrast, increasing non-respiratory NADH oxidation by overexpression of a water-forming NADH oxidase reduced aerobic glycerol formation. The metabolic response to elevated alternative oxidase occurred predominantly in the mitochondria, while NADH oxidase affected genes that catalyze cytosolic reactions. Moreover, NADH oxidase restored the deficiency of cytosolic NADH dehydrogenases in S. cerevisiae. These results indicate that NADH oxidase localizes in the cytosol, while alternative oxidase is directed to the mitochondria. The onset of aerobic ethanol formation is demonstrated to be a consequence of an imbalance in mitochondrial redox balancing. In addition to answering fundamental physiological questions, our findings are relevant for all biomass derived applications of S. cerevisiae. Experiment Overall Design: Heterologous gene expression in chemostats using Affymetrix Yeast Genome 2.0 arrays. Total RNA extraction and sample preparation, hybridization was done according to the manufacturer's protocol.