An essential role for PTIP in mediating Hox gene regulation along PcG and trxG pathways
Ontology highlight
ABSTRACT: During Drosophila development, Polycomb-group and Trithorax-group proteins function to ensure correct maintenance of transcription patterns by epigenetically repressing or activating target gene expression. To get a deep insight into the PcG and trxG pathways, we investigated a BRCT domain-containing protein called PTIP, which was generally identified as a transcriptional coactivator and belongs to the TRR complex. At the genome scale, we sorted given PTIP binding peaks into two groups: PTIP/TRR-cobound and PTIP/PC-cobound peaks. In particular, we found that PTIP mediates the molecular switch between H3K4me3/H3K27ac and H3K27me3 histone modifications at TRR or PC occupied regions. Thus, we suggest that PTIP is a mediator rather than a dedicated co-activator along PcG and trxG pathways. Our hypothesis is further supported by the genetic assay: PTIP interacts genetically with either PcG or TrxG in a dosage-dependent manner, suggesting that PTIP functions as a co-factor of PcG/TrxG proteins. In addition, in accordance with the analysis of ChIP-seq, these genetic interactions correlate with modified ectopic HOX protein levels in imaginal discs, which reveals an essential role for PTIP in PcG-mediated Hox gene repression. Hence, we reveal a novel role for PTIP in the epigenetic regulation of gene expression along PcG and trxG pathways.
ORGANISM(S): Drosophila melanogaster
PROVIDER: GSE203601 | GEO | 2022/05/23
REPOSITORIES: GEO
ACCESS DATA