MiRNA expression in tracheal aspirates [sBPD, BPD-PH]
Ontology highlight
ABSTRACT: Extreme preterm infants are a growing population in the neonatal intensive care unit. Multiple factors play a role in preterm birth, resulting in complications including severe bronchopulmonary dysplasia (sBPD) without or with and pulmonary hypertension (BPD-PH). The goal of this study was to identify biomarker signatures associated with sBPD and BPD-PH. We analyzed profiles in tracheal aspirates (TAs) from 46 extremely preterm infants receiving invasive mechanical ventilation (25 sBPD, 21 BPD-PH) . We found specific miRNA signatures in TAs that may serve as biomarkers for the two disease phenotypes.
Project description:Extreme preterm infants are a growing population in neonatal intensive care units who carry a high mortality and morbidity. Multiple factors play a role in preterm birth, resulting in major impact on organogenesis leading to complications including bronchopulmonary dysplasia (BPD). The goal of this study was to identify biomarker signatures associated with BPD severity. We analyzed profiles in tracheal aspirates (TAs) from 25 extremely preterm infants receiving invasive mechanical ventilation. Eight infants were diagnosed with mild/moderate BPD, and 17 were diagnosed with severe BPD, according to the NHLBI consensus conference classification . We found specific miRNA signatures in TAs that may serve as biomarkers for BPD severity.
Project description:Extreme preterm infants are a growing population in neonatal intensive care units who carry a high mortality and morbidity. Multiple factors play a role in preterm birth, resulting in major impact on organogenesis leading to complications including bronchopulmonary dysplasia (BPD). The goal of this study was to identify biomarker signatures associated with prematurity and BPD. We analyzed miRNA and mRNA profiles in tracheal aspirates (TAs) from 51 infants receiving invasive mechanical ventilation. 25 infants were extremely preterm and diagnosed with BPD, and 26 were term babies receiving invasive mechanical ventilation for elective procedures. We found specific mRNA-miRNA signatures in TAs that may serve as biomarkers for BPD pathogenesis, a consequence of extreme prematurity.
Project description:Tracheal aspirate (TAs) samples were collected from intubated preterm infants with hemodynamically significant intracardiac shunt (ICS), and a diagnosis of ICS-BPD/ICS-BPD-PH. 36 TA samples were analyzed. Small RNAs were extracted and the expression miRNAs was detected with PCR arrays.
Project description:We analyzed mRNA profiles in tracheal aspirates from 53 newborns receiving invasive mechanical ventilation. Twenty-six infants were extremely preterm diagnosed with BPD and twenty-seven were term babies receiving invasive mechanical ventilation for elective procedure. Specific mRNA signatures in TAs may serve as potential biomarkers for extreme prematurity and BPD pathogenesis.
Project description:Bronchopulmonary dysplasia (BPD) is the major cause of chronic lung disease (CLD) and morbidity in preterm infants, which characterized by impaired pulmonary alveolar development in preterm infants. There is increasing evidence that micro RNA (miRNA) has a close association with the development of pulmonary diseasesincluding lung growth, pulmonary fibrosis, pneumonia, etc. The potential role of miRNA in the pathogenesis of BPD is unclear. This study aims to clarify the role of adrenomedullin (ADM) regulated by miRNA-547-3p during the process of BPD and illustrate the protective effect of ADM involved in preterm infants.We indentified the differential expressed miRNA and their potential target genes, microarray analysis using Agilent Human 4x44K Gene Expression Microarrays v2 and miRCURY LNA™ microRNA Array was performed. The results of miRNA chip were scanned by Axon GenePix 4000B and the signal of probes were read by GenePix Pro 6.0 software. Only the target genes which exist in both two databases and having different expression trend were remained. Thus, miRNA-574-3p and it’s target gene ADM were selected to do the further research in our study. And we verified miRNA-574-3p and ADM expression in BPD premature infants by realtime q-PCR. After the microarray expression analysis, there were 516 probes differential expressed between BPD samples and normal samples. Among them, 510 were up-regulated and 213 were down-regulated. Meanwhile, to the miRNA aspect, there were 37 up-regulated and 44 down-regulated. After text mining, we found ADM was already found play a role in BPD. ADM is an endogenous peptide with potent angiogenic, anti-oxidant, and anti-inflammatory properties. Realtime q-PCR assay results showed that, miRNA-574-3p expression level in blood samples from preterm infants with BPD was significantly decreased, ADM expression level in blood samples from preterm infants with BPD was significantly increased. In our study, we found that up-regulation of ADM regulated by miRNA-574-3p could protect preterm infants with BPD. These data provide novel insights into ADM regulated by miRNA-574-3p which may be shed light on BPD prevention and treatment.
Project description:Bronchopulmonary dysplasia (BPD) is the major cause of chronic lung disease (CLD) and morbidity in preterm infants, which characterized by impaired pulmonary alveolar development in preterm infants. There is increasing evidence that micro RNA (miRNA) has a close association with the development of pulmonary diseasesincluding lung growth, pulmonary fibrosis, pneumonia, etc. The potential role of miRNA in the pathogenesis of BPD is unclear. This study aims to clarify the role of adrenomedullin (ADM) regulated by miRNA-547-3p during the process of BPD and illustrate the protective effect of ADM involved in preterm infants.We indentified the differential expressed miRNA and their potential target genes, microarray analysis using Agilent Human 4x44K Gene Expression Microarrays v2 and miRCURY LNA™ microRNA Array was performed. The results of miRNA chip were scanned by Axon GenePix 4000B and the signal of probes were read by GenePix Pro 6.0 software. Only the target genes which exist in both two databases and having different expression trend were remained. Thus, miRNA-574-3p and it’s target gene ADM were selected to do the further research in our study. And we verified miRNA-574-3p and ADM expression in BPD premature infants by realtime q-PCR. After the microarray expression analysis, there were 516 probes differential expressed between BPD samples and normal samples. Among them, 510 were up-regulated and 213 were down-regulated. Meanwhile, to the miRNA aspect, there were 37 up-regulated and 44 down-regulated. After text mining, we found ADM was already found play a role in BPD. ADM is an endogenous peptide with potent angiogenic, anti-oxidant, and anti-inflammatory properties. Realtime q-PCR assay results showed that, miRNA-574-3p expression level in blood samples from preterm infants with BPD was significantly decreased, ADM expression level in blood samples from preterm infants with BPD was significantly increased. In our study, we found that up-regulation of ADM regulated by miRNA-574-3p could protect preterm infants with BPD. These data provide novel insights into ADM regulated by miRNA-574-3p which may be shed light on BPD prevention and treatment.
Project description:One third to one half of all infants born before the 28th wek of gestation develop BPD bronchopulmonary dysplasia. Our objective is to evaluate the feasibility of using expression profiling in umbilical cord tissue to discover molecular signatures for developmental staging and for risk of BPD. Keywords: disease state analysis
Project description:Introduction: Early pulmonary vascular disease in preterm infants is associated with the subsequent development of bronchopulmonary dysplasia (BPD) and pulmonary hypertension (PH), however, mechanisms that contribute to or identify infants with increased susceptibility for BPD and/or PH are incompletely understood. Therefore, we tested if changes in circulating angiogenic peptides during the first week of life are associated with the later development of BPD and/or PH. We further sought to determine alternate peptides and related signalling pathways with the risk for BPD or PH. Methods: We prospectively enrolled infants with gestational age <34 weeks gestation and collected blood samples during their first week of life. BPD and PH were assessed at 36 weeks postmenstrual age. Samples were assayed for each of the 1121 peptides included in the SOMAscanTM technology, with subsequent pathway analysis. Results: Of 102 study infants, 82 had BPD and 13 had PH. Multiple angiogenic proteins (PF-4, VEGF121, ANG-1, BMP10, HGF, ANG2) were associated with the subsequent diagnosis of BPD, and FGF-19, PF-4, CTAP-III and PDGF-AA levels were associated with BPD severity. Early increases in BMP10 was strongly associated with the late risk for BPD and PH. Conclusion: We found that early alterations of circulating angiogenic peptides and others were associated with the subsequent development of BPD. We further identified peptides that were associated with BPD severity and BPD-associated PH, including BMP10. We speculate that proteomic biomarkers during the first week of life may identify infants at risk for BPD and/or PH to enhance care and research.