SARS-CoV-2 mRNA Dual Immunization Induces Innate Transcriptional Signatures, Establishes T-Cell Memory and Coordinates the Response to Booster
Ontology highlight
ABSTRACT: Bulk mRNA sequencing of whole blood from health-care professionals aged 28-65 years was perfomed in samples collected before and three days after the second dose of BNT162b2, in order to analyze the human immune response to dual mRNA immunization with the mRNA BNT162b2 vaccine.
Project description:Purpose; The aim of this study is to find out the difference of gene expression by immunization with the pep27 mutant vaccine. Method; After immunization with the pep27 mutant vaccine, mRNA was extracted from lung and spleen. Result; Both B and T cells were activated by the pep27 mutant vaccine.
Project description:Ad26.COV2.S has demonstrated durability and clinical efficacy against symptomatic COVID-19 in humans. In this study, we report the correlates of durability of humoral and cellular immune responses in 20 rhesus macaques immunized with single-shot Ad26.COV2.S and the immunogenicity of a booster shot at 8 to 10 months after the initial immunization. Ad26.COV2.S elicited durable binding and neutralizing antibodies as well as memory B cells and long-lived bone marrow plasma cells. Innate immune responses and bone marrow plasma cell responses correlated with durable antibody responses. After Ad26.COV2.S boost immunization, binding and neutralizing antibody responses against multiple SARS-CoV-2 variants increased 31- to 69-fold and 23- to 43-fold, respectively, compared with preboost concentrations. Antigen-specific B cell and T cell responses also increased substantially after the boost immunization. Boosting with a modified Ad26.COV2.S.351 vaccine expressing the SARS-CoV-2 spike protein from the beta variant led to largely comparable responses with slightly higher beta- and omicron-specific humoral immune responses. These data demonstrate that a late boost with Ad26.COV2.S or Ad26.COV2.S.351 resulted in a marked increase in humoral and cellular immune responses that were highly cross-reactive across multiple SARS-CoV-2 variants in rhesus macaques.
Project description:Intranasal (IN) immunization induces different genotype expression in CD8 memory T cells compared to the CD8 memory T cells induced by intramuscular (IM) immunization. We used microarrays to detail the global program of gene expression underlying the differential induction after IN or IM immunization.
Project description:BackgroundmRNA vaccines have played a crucial role in controlling the SARS-CoV-2 global pandemic. However, the immunological mechanisms involved in the induction, magnitude and longevity of mRNA-vaccine-induced protective immunity are still unclear.MethodsIn our study, we used whole-RNA sequencing along with detailed immunophenotyping of antigen-specific T cells and humoral RBD-specific response to dual immunization with the Pfizer-BioNTech mRNA vaccine (BNT162b2) and correlated them with response to an additional dose, administered 10 months later, in order to comprehensively profile the immune response of healthy volunteers to BNT162b2.ResultsPrimary dual immunization induced upregulation of the Type I interferon pathway and generated spike protein (S)-specific IFN-γ+ and TNF-α+ CD4 T cells, S-specific memory CD4 T cells, and RBD-specific antibodies against SARS-CoV-2. S-specific CD4 T cells induced by the primary series correlated with the RBD-specific antibody titers to a third dose.ConclusionsThis study demonstrates the induction of both innate and adaptive immunity in response to the BNT162b2 mRNA vaccine in a coordinated manner and identifies the central role of primarily induced CD4+ T cells as a predictive biomarker of the magnitude of anamnestic immune response.
Project description:To provide a basis for further optimization of the polio sequential immunization schedule, this study evaluated the effectiveness of booster immunization with one dose of bivalent oral poliovirus vaccine (bOPV) at 48 months of age after different primary polio immunization schedules. At 48 months of age, one dose of bOPV was administered, and their poliovirus types 1-3 (PV1, PV2, and PV3, respectively)-specific neutralizing antibody levels were determined. Participants found to be negative for any type of PV-specific neutralizing antibody at 24, 36, or 48 months of age were re-vaccinated with inactivated polio vaccine (IPV). The 439 subjects who received a bOPV booster immunization at the age of 48 months had lower PV2-specific antibody levels compared with those who received IPV. One dose of IPV during basic polio immunization induced the lowest PV2-specific antibody levels. On the basis of our findings, to ensure that no less than 70% of the vaccinated have protection efficiency, we recommend the following: if basic immunization was conducted with 1IPV + 2bOPV (especially Sabin strain-based IPV), a booster immunization with IPV is recommended at 36 months of age, whereas if basic immunization was conducted with 2IPV + 1bOPV, a booster immunization with IPV is recommended at 48 months of age. A sequential immunization schedule of 2IPV + 1bOPV + 1IPV can not only maintain high levels of antibody against PV1 and PV3 but also increases immunity to PV2 and induces early intestinal mucosal immunity, with relatively good safety. Thus, this may be the best sequential immunization schedule for polio in countries or regions at high risk for polio.
Project description:To compare the effects of different types of SARS-CoV-2 vaccines in booster immunization, this study established a population cohort vaccinated with inactivated vaccine and protein subunit vaccine as the third booster vaccine, respectively. We collected serum and PBMC samples from participants in chronological order, and performed a systematic review of distinct antibody signatures and microtranscriptomics to provide data support for booster immunization.
Project description:We longitudinally profiled plasma proteomes in 54 adults vaccinated with the BNT162b2 (Pfizer-BioNTech) or ChAdOx1-S (Oxford-AstraZeneca) vaccines. Blood was collected pre-vaccination (V0) and 1-7 days after the 1st doses (BNT162b2 or mRNA-1273, V1) to assess innate and early adaptive responses. We identified key differences in the immune responses induced by the ChAdOx1-S and BNT162b2 vaccines that were correlated with subsequent antigen-specific antibody and T cell responses or vaccine reactogenicity. We observed that vaccination with ChAdOx1-S but not BNT162b2 induced a memory-like response after the first dose, which was correlated with the expression of several proteins involved in complement and coagulation. The COVID-19 Vaccine Immune Responses Study (COVIRS) thus represents a major resource to understand the immunogenicity and reactogenicity of these COVID-19 vaccines.
Project description:Broadly HIV-1 neutralizing VRC01-class antibodies target the CD4-binding site of Env. They are derived from VH1-2*02 antibody heavy chains paired with rare light chains expressing five amino acid long CDRL3s. They have been isolated from infected subjects but have not yet been elicited by immunization. Env-derived immunogens capable of binding the germline forms of VRC01 B cell receptors on naïve B cells have been designed and evaluated in knock-in mice. However, the elicited antibodies cannot bypass glycans present on the conserved position N276 of Env, which restricts access to the CD4-binding site. Efforts to guide the appropriate maturation of these antibodies by sequential immunization have not yet been successful. Here, we report on a two-step immunization scheme that led to the maturation of VRC01-like antibodies capable of accommodating the N276 glycan and displaying autologous tier 2 neutralizing activities. Our results are relevant to clinical trials aiming to elicit VRC01 antibodies.