Type 1 diabetes risk genes mediate pancreatic beta cell survival in response to proinflammatory cytokines
Ontology highlight
ABSTRACT: Beta cells intrinsically contribute to the pathogenesis of type 1 diabetes (T1D), but the genes and molecular processes that mediate beta cell survival in T1D remain largely unknown. We combined high throughput functional genomics and human genetics to identify T1D risk loci regulating genes affecting beta cell survival in response to the proinflammatory cytokines IL-1b, IFNg, and TNFa. We mapped cytokine-responsive candidate cis-regulatory elements (cCREs) active in beta cells using ATAC-seq and single nuclear ATAC-seq (snATAC-seq), and linked cytokine-responsive beta cell cCREs to putative target genes using single cell co-accessibility and HiChIP. We performed a genome-wide pooled CRISPR loss-of-function screen in EndoC-βH1 cells, which identified hundreds of genes affecting cytokine-induced beta cell loss. We identified thousands of variants in cytokine-responsive beta cell cCREs altering transcription factor (TF) binding using high-throughput SNP-SELEX. Together our findings reveal processes and genes acting in beta cells during cytokine exposure that intrinsically modulate risk of T1D.
ORGANISM(S): Homo sapiens
PROVIDER: GSE205853 | GEO | 2022/10/31
REPOSITORIES: GEO
ACCESS DATA