ANT2 accelerates cutaneous wound healing in aged skin by reverse senescence
Ontology highlight
ABSTRACT: An effective healing response is critical to healthy aging. Thus, the connection of regeneration and aging is needed to understand the complicated age-related healing process. Energy metabolism has been a common hallmark of both studies. In recent years, it become an emerging factor of skin homeostasis. Adenine nucleotide translocase-2 (ANT2) is a known cell proliferation marker and mediator of ATP import into mitochondria for energy homeostasis. Although energy homeostasis and the maintenance of mitochondrial function are critical for wound healing, the role of ANT2 in wound healing has not been elucidated. We found that ANT2 expression decreased during aging in mouse skin as well as during cellular senescence. Interestingly, overexpression of ANT2 in aged mouse skin promoted the healing of full-thickness cutaneous wounds. In addition, upregulation of ANT2 in replicative senescent human diploid dermal fibroblasts (HDFs) induced cell proliferation and migration, which are critical for the wound healing process. Furthermore, overexpression of ANT2 increased ATP production rate by activating the glycolysis pathway and also increased mitophagy, both of which are involved in energy homeostasis. Notably, ANT2-mediated upregulation of HSPA6 in aged HDFs inhibited the expression of pro-inflammatory genes that mediate cellular senescence and mitochondrial damage. This study demonstrates a new physiological role of ANT2 in skin wound healing via regulation of cell proliferation, energy homeostasis, and inflammation. Thus, our study links energy metabolism to skin homeostasis and identifies a genetic factor for improving wound healing with aging model.
ORGANISM(S): Homo sapiens
PROVIDER: GSE206141 | GEO | 2022/11/21
REPOSITORIES: GEO
ACCESS DATA