Project description:gene expression profiling by RNA-seq in THP-1 cells treated with 1,25(OH)2D3 for 2.5-24 h three independent experiments of 1,25(OH)2D3 time course in THP-1 cells
Project description:Assessment of regions of open chromatin by FAIRE-seq in THP-1 cells treated with 1,25(OH)2D3 for 0-48 h Three independent experiments of 1,25(OH)2D3 time course in THP-1 cells
Project description:Neonatal keratinocytes from African American donors of passage 2 or 3 were treated with 20,23(OH)2D3, 1,25(OH)2D3 or 0.1% ethanol (control) for 6 and 24 hours. The cells were harvested separately, RNA isolated and submitted for microarray analysis at the Molecular Resources Center at the UTHSC.
Project description:Gene expression was compared between CD11c+ bone marrow derived dendritic cells (BMDC) was compared between cells conditioned in 20nM 1,25(OH)2D3 (Vitamin D) or vehicle. A second analysis compared gene expression in 1,25(OH)2D3 or vehicle CD11c+ BMDCs which were matured in presence of 0.1ug/ml LPS.
Project description:Fibroblast growth factor 23 (FGF23) is produced and secreted by osteocytes and is essential for maintaining phosphate homeostasis. One of the main regulators of FGF23, 1,25-dihydroxyvitamin D (1,25(OH)2D3), is primarily synthesized in the kidney from 25-hydroxyvitamin D (25(OH)D) by 1α-hydroxylase (encoded by CYP27B1). Hitherto, it is unclear whether osteocytes can convert 25(OH)D and thereby allow for 1,25(OH)2D3 to induce FGF23 production and secretion locally. Here, we differentiated MC3T3-E1 cells towards osteocyte-like cells expressing and secreting FGF23. Treatment with 10-6 M 25(OH)D resulted in conversion of 25(OH)D to 150 pmol/L 1,25(OH)2D3 and increased FGF23 expression and secretion but the converted amount of 1,25(OH)2D3 was insufficient to trigger an FGF23 response, so the effect on FGF23 was most likely directly caused by 25(OH)D. Interestingly, combining phosphate with 25(OH)D resulted in a synergistic increase in FGF23 expression and secretion, likely due to activation of additional signaling pathways by phosphate. Blockage of the vitamin D receptor (VDR) only partially abolished the effects of 25(OH)D or 25(OH)D combined with phosphate on Fgf23, while completely inhibiting the upregulation of cytochrome P450 family 24 subfamily A member 1 (Cyp24a1), encoding for 24-hydroxylase. RNA sequencing and in silico analyses showed that this could potentially be mediated by the nuclear receptors Retinoic Acid Receptor b (RARB) and Estrogen Receptor 2 (ESR2). Taken together, we demonstrate that osteocytes are able to convert 25(OH)D to 1,25(OH)2D3, but this is insufficient for FGF23 activation, implicating a direct effect of 25(OH)D in the regulation of FGF23, which occurs at least partially independent from its cognate vitamin D receptor Moreover, phosphate and 25(OH)D synergistically increase expression and secretion of FGF23, which warrants investigating consequences in patients receiving a combination of vitamin D analogues and phosphate supplements. These observations help us to further understand the complex relations between, phosphate, vitamin D and FGF23.
Project description:We report the effects of 1,25(OH)2D3 treatment on the mRNA expression in human muscle cells Primary cultures of human muscle cells were treated with 1,25(OH)2D3 or vehicle for 48 hours.
Project description:We report the effects of 1,25(OH)2D3 treatment on the microRNA expression in human muscle cells Primary cultures of human muscle cells were treated with 1,25(OH)2D3 or vehicle for 48 hours.