Project description:The sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough possesses four periplasmic hydrogenases to facilitate the oxidation of molecular hydrogen. These include an [Fe] hydrogenase, an [NiFeSe] hydrogenase, and two [NiFe] hydrogenases encoded by the hyd, hys, hyn1, and hyn2 genes, respectively. In order to understand their cellular functions, we have compared the growth rates of existing (hyd and hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those of the wild type in defined media in which lactate or hydrogen at either 5 or 50% (vol/vol) was used as the sole electron donor for sulfate reduction. Only strains missing the [Fe] hydrogenase were significantly affected during growth with lactate or with 50% (vol/vol) hydrogen as the sole electron donor. When the cells were grown at low (5% [vol/vol]) hydrogen concentrations, those missing the [NiFeSe] hydrogenase suffered the greatest impairment. The growth rate data correlated strongly with gene expression results obtained from microarray hybridizations and real-time PCR using mRNA extracted from cells grown under the three conditions. Expression of the hys genes followed the order 5% hydrogen>50% hydrogen>lactate, whereas expression of the hyd genes followed the reverse order. These results suggest that growth with lactate and 50% hydrogen is associated with high intracellular hydrogen concentrations, which are best captured by the higher activity, lower affinity [Fe] hydrogenase. In contrast, growth with 5% hydrogen is associated with a low intracellular hydrogen concentration, requiring the lower activity, higher affinity [NiFeSe] hydrogenase.
Project description:UnlabelledSulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness at low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. We discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp.ImportanceThe NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB.
Project description:Two mutant strains of Desulfovibrio vulgaris Hildenborough lacking either the sod gene for periplasmic superoxide dismutase or the rbr gene for rubrerythrin, a cytoplasmic hydrogen peroxide (H(2)O(2)) reductase, were constructed. Their resistance to oxidative stress was compared to that of the wild-type and of a sor mutant lacking the gene for the cytoplasmic superoxide reductase. The sor mutant was more sensitive to exposure to air or to internally or externally generated superoxide than was the sod mutant, which was in turn more sensitive than the wild-type strain. No obvious oxidative stress phenotype was found for the rbr mutant, indicating that H(2)O(2) resistance may also be conferred by two other rbr genes in the D. vulgaris genome. Inhibition of Sod activity by azide and H(2)O(2), but not by cyanide, indicated it to be an iron-containing Sod. The positions of Fe-Sod and Sor were mapped by two-dimensional gel electrophoresis (2DE). A strong decrease of Sor in continuously aerated cells, indicated by 2DE, may be a critical factor in causing cell death of D. vulgaris. Thus, Sor plays a key role in oxygen defense of D. vulgaris under fully aerobic conditions, when superoxide is generated mostly in the cytoplasm. Fe-Sod may be more important under microaerophilic conditions, when the periplasm contains oxygen-sensitive, superoxide-producing targets.
Project description:The sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough possesses four periplasmic hydrogenases to facilitate the oxidation of molecular hydrogen. These include an [Fe], a [NiFeSe] and two [NiFe] hydrogenases encoded by the hyd, hys, hyn1 and hyn2 genes, respectively. In order to understand their cellular functions the expression levels of these hydrogenases, along with the growth rate analysis of mutant strains, was determined during growth on defined media under 3 different conditions. These conditions incuded lactate or hydrogen at either 5% or 50% (vol/vol) used as the sole electron donor for sulfate reduction. Keywords: Electron donor change
Project description:We used high-resolution tiling microarrays and 5' RNA sequencing to identify transcripts in Desulfovibrio vulgaris Hildenborough, a model sulfate-reducing bacterium. We identified the first nucleotide position for 1,124 transcripts, including 54 proteins with leaderless transcripts and another 72 genes for which a major transcript initiates within the upstream protein-coding gene, which confounds measurements of the upstream gene's expression. Sequence analysis of these promoters showed that D. vulgaris prefers -10 and -35 boxes different from those preferred by Escherichia coli. A total of 549 transcripts ended at intrinsic (rho-independent) terminators, but most of the other transcripts seemed to have variable ends. We found low-level antisense expression of most genes, and the 5' ends of these transcripts mapped to promoter-like sequences. Because antisense expression was reduced for highly expressed genes, we suspect that elongation of nonspecific antisense transcripts is suppressed by transcription of the sense strand. Finally, we combined the transcript results with comparative analysis and proteomics data to make 505 revisions to the original annotation of 3,531 proteins: we removed 255 (7.5%) proteins, changed 123 (3.6%) start codons, and added 127 (3.7%) proteins that had been missed. Tiling data had higher coverage than shotgun proteomics and hence led to most of the corrections, but many errors probably remain. Our data are available at http://genomics.lbl.gov/supplemental/DvHtranscripts2011/.
Project description:Sulfate-reducing bacteria (SRB) are obligate anaerobes that can couple their growth to the reduction of sulfate. Despite the importance of SRB to global nutrient cycles and their damage to the petroleum industry, our molecular understanding of their physiology remains limited. To systematically provide new insights into SRB biology, we generated a randomly barcoded transposon mutant library in the model SRB Desulfovibrio vulgaris Hildenborough (DvH) and used this genome-wide resource to assay the importance of its genes under a range of metabolic and stress conditions. In addition to defining the essential gene set of DvH, we identified a conditional phenotype for 1,137 non-essential genes. Through examination of these conditional phenotypes, we were able to make a number of novel insights into our molecular understanding of DvH, including how this bacterium synthesizes vitamins. For example, we identified DVU0867 as an atypical L-aspartate decarboxylase required for the synthesis of pantothenic acid, provided the first experimental evidence that biotin synthesis in DvH occurs via a specialized acyl carrier protein and without methyl esters, and demonstrated that the uncharacterized dehydrogenase DVU0826:DVU0827 is necessary for the synthesis of pyridoxal phosphate. In addition, we used the mutant fitness data to identify genes involved in the assimilation of diverse nitrogen sources and gained insights into the mechanism of inhibition of chlorate and molybdate. Our large-scale fitness dataset and RB-TnSeq mutant library are community-wide resources that can be used to generate further testable hypotheses into the gene functions of this environmentally and industrially important group of bacteria.
Project description:The sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough possesses four periplasmic hydrogenases to facilitate the oxidation of molecular hydrogen. These include an [Fe], a [NiFeSe] and two [NiFe] hydrogenases encoded by the hyd, hys, hyn1 and hyn2 genes, respectively. In order to understand their cellular functions the expression levels of these hydrogenases, along with the growth rate analysis of mutant strains, was determined during growth on defined media under 3 different conditions. These conditions incuded lactate or hydrogen at either 5% or 50% (vol/vol) used as the sole electron donor for sulfate reduction. Keywords: Electron donor change For each condition 2 unique biological samples were hybridized to 4 arrays that each contained duplicate spots. Genomic DNA was used as universal reference. After total intensity normalization the SAM (significance analysis of microarrays) was used to find differentially expressed genes.
Project description:Insertion element ISD1, discovered when its transposition caused the insertional inactivation of an introduced sacB gene, is present in two copies in the genome of Desulfovibrio vulgaris Hildenborough. Southern blot analysis indicated at least two insertion sites in the sacB gene. Cloning and sequencing of a transposed copy of ISD1 indicated a length of 1,200 bp with a pair of 44-bp imperfect inverted repeats at the ends, flanked by a direct repeat of the 4-bp target sequence. AAGG and AATT were found to function as target sequences. ISD1 encodes a transposase from two overlapping open reading frames by programmed translational frameshifting at an A6G shifty codon motif. Sequence comparison showed that ISD1 belongs to the IS3 family. Isolation and analysis of the chromosomal copies, ISD1-A and ISD1-B, by PCR and sequencing indicated that these are not flanked by direct repeats. ISD1-A is inserted in a region of the chromosome containing the gapdh-pgk genes (encoding glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase). Active transposition to other loci in the genome was demonstrated, offering the potential of a new tool for gene cloning and mutagenesis. ISD1 is the first transposable element described for the sulfate reducers, a large and environmentally important group of bacteria. The distribution of ISD1 in genomes of sulfate-reducing bacteria is limited. A single copy is present in the genome of D. desulfuricans Norway.
Project description:The rbo gene of Desulfovibrio vulgaris Hildenborough encodes rubredoxin oxidoreductase (Rbo), a 14-kDa iron sulfur protein; forms an operon with the gene for rubredoxin; and is preceded by the gene for the oxygen-sensing protein DcrA. We have deleted the rbo gene from D. vulgaris with the sacB mutagenesis procedure developed previously (R. Fu and G. Voordouw, Microbiology 143:1815-1826, 1997). The absence of the rbo-gene in the resulting mutant, D. vulgaris L2, was confirmed by PCR and protein blotting with Rbo-specific polyclonal antibodies. D. vulgaris L2 grows like the wild type under anaerobic conditions. Exposure to air for 24 h caused a 100-fold drop in CFU of L2 relative to the wild type. The lag times of liquid cultures of inocula exposed to air were on average also greater for L2 than for the wild type. These results demonstrate that Rbo, which is not homologous with superoxide dismutase or catalase, acts as an oxygen defense protein in the anaerobic, sulfate-reducing bacterium D. vulgaris Hildenborough and likely also in other sulfate-reducing bacteria and anaerobic archaea in which it has been found.